Neuromodulation of insect motion vision

Karen Y. Cheng, Mark A. Frye

Research output: Contribution to journalArticle

1 Scopus citations


Insects use vision to choose from a repertoire of flexible behaviors which they perform for survival. Decisions for behavioral plasticity are achieved through the neuromodulation of sensory processes, including motion vision. Here, we briefly review the anatomy of the insect motion vision system. Next, we review the neuromodulatory influences on motion vision. Serotonin modulates peripheral visual processing, whereas octopamine modulates all stages of visual processing tested to date. The physiological and behavioral states that elicit neuromodulation of motion vision include locomotion, changes in internal physiological state such as hunger, and changes in the external environment such as the presence of additional sensory cues. The direction of influence between these states and neuromodulators remains unknown. The influence of neuromodulators on motion vision circuitry has been revealed mostly through pharmacological application, which broadcasts widely with unnatural spatiotemporal dynamics. Thus, insight from this method is limited. Aminergic neurons likely act in local hierarchical fashion rather than globally as a group. As genetic tools advance in Drosophila, future work restricting the experimental focus to subpopulations of modulatory neurons will provide insight into the local functional modifications of visual circuits by interacting neuromodulators.



  • Drosophila
  • Multi-modal integration
  • Octopamine
  • Serotonin
  • Visual circuits

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Physiology
  • Animal Science and Zoology
  • Behavioral Neuroscience

Cite this