NBCe1A dimer assemble visualized by bimolecular fluorescence complementation

Min Hwang Chang, An Ping Chen, Michael F Romero

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Mutations in the electrogenic Na+/HCO3 - cotransporter (NBCe1) that cause proximal renal tubular acidosis (pRTA), glaucoma, and cataracts in patients are recessive. Parents and siblings of these affected individuals seem asymptomatic although their tissues should make some mutant NBCe1 protein. Biochemical studies with AE1 and NBCe1 indicate that both, and probably all, Slc4 members form dimers. However, the physiologic implications of dimerization have not yet been fully explored. Here, human NBCe1A dimerization is demonstrated by biomolecular fluorescence complementation (BiFC). An enhanced yellow fluorescent protein (EYFP) fragment (1-158, EYFPN) or (159 -238, EYFPC) was fused to the NH2 or COOH terminus of NBCe1A and mix-and-matched expressed in Xenopus oocyte. The EYFP fluorescent signal was observed only when both EYFP fragments are fused to the NH2 terminus of NBCe1A (EYFPN-NNBCe1A w/ EYFPC-N-NBCe1A), and the electrophysiology data demonstrated this EYFP-NBCe1A coexpressed pair have wild-type transport function. These data suggest NBCe1A forms dimers and that NH2 termini from the two monomers are in close proximity, likely pair up, to form a functional unit. To explore the physiologic significance of NBCe1 dimerization, we chose two severe NBCe1 mutations (6.6 and 20% wild-type function individually): S427L (naturally occurring) and E91R (for NH2-terminal structure studies). When we coexpressed S427L and E91R, we measured 50% wild-type function, which can only occur if the S427L-E91R heterodimer is the functional unit. We hypothesize that the dominant negative effect of heterozygous NBCe1 carrier should be obvious if the mutated residues are structurally crucial to the dimer formation. The S427L-E91R heterodimer complex allows the monomers to structurally complement each other resulting in a dimer with wild-type like function.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Renal Physiology
Volume306
Issue number6
DOIs
StatePublished - Mar 15 2014

Fingerprint

Dimerization
Fluorescence
Proteins
Renal Tubular Acidosis
Mutation
Electrophysiology
Mutant Proteins
Xenopus
Glaucoma
Cataract
Oocytes
Siblings
Parents

Keywords

  • Acid base
  • Electrophysiology
  • Membrane current
  • Protein structure
  • SLC4
  • Xenopus oocyte

ASJC Scopus subject areas

  • Physiology
  • Urology
  • Medicine(all)

Cite this

NBCe1A dimer assemble visualized by bimolecular fluorescence complementation. / Chang, Min Hwang; Chen, An Ping; Romero, Michael F.

In: American Journal of Physiology - Renal Physiology, Vol. 306, No. 6, 15.03.2014.

Research output: Contribution to journalArticle

@article{5f717f5d1de74e3e957afef2fea466a3,
title = "NBCe1A dimer assemble visualized by bimolecular fluorescence complementation",
abstract = "Mutations in the electrogenic Na+/HCO3 - cotransporter (NBCe1) that cause proximal renal tubular acidosis (pRTA), glaucoma, and cataracts in patients are recessive. Parents and siblings of these affected individuals seem asymptomatic although their tissues should make some mutant NBCe1 protein. Biochemical studies with AE1 and NBCe1 indicate that both, and probably all, Slc4 members form dimers. However, the physiologic implications of dimerization have not yet been fully explored. Here, human NBCe1A dimerization is demonstrated by biomolecular fluorescence complementation (BiFC). An enhanced yellow fluorescent protein (EYFP) fragment (1-158, EYFPN) or (159 -238, EYFPC) was fused to the NH2 or COOH terminus of NBCe1A and mix-and-matched expressed in Xenopus oocyte. The EYFP fluorescent signal was observed only when both EYFP fragments are fused to the NH2 terminus of NBCe1A (EYFPN-NNBCe1A w/ EYFPC-N-NBCe1A), and the electrophysiology data demonstrated this EYFP-NBCe1A coexpressed pair have wild-type transport function. These data suggest NBCe1A forms dimers and that NH2 termini from the two monomers are in close proximity, likely pair up, to form a functional unit. To explore the physiologic significance of NBCe1 dimerization, we chose two severe NBCe1 mutations (6.6 and 20{\%} wild-type function individually): S427L (naturally occurring) and E91R (for NH2-terminal structure studies). When we coexpressed S427L and E91R, we measured 50{\%} wild-type function, which can only occur if the S427L-E91R heterodimer is the functional unit. We hypothesize that the dominant negative effect of heterozygous NBCe1 carrier should be obvious if the mutated residues are structurally crucial to the dimer formation. The S427L-E91R heterodimer complex allows the monomers to structurally complement each other resulting in a dimer with wild-type like function.",
keywords = "Acid base, Electrophysiology, Membrane current, Protein structure, SLC4, Xenopus oocyte",
author = "Chang, {Min Hwang} and Chen, {An Ping} and Romero, {Michael F}",
year = "2014",
month = "3",
day = "15",
doi = "10.1152/ajprenal.00284.2013",
language = "English (US)",
volume = "306",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "6",

}

TY - JOUR

T1 - NBCe1A dimer assemble visualized by bimolecular fluorescence complementation

AU - Chang, Min Hwang

AU - Chen, An Ping

AU - Romero, Michael F

PY - 2014/3/15

Y1 - 2014/3/15

N2 - Mutations in the electrogenic Na+/HCO3 - cotransporter (NBCe1) that cause proximal renal tubular acidosis (pRTA), glaucoma, and cataracts in patients are recessive. Parents and siblings of these affected individuals seem asymptomatic although their tissues should make some mutant NBCe1 protein. Biochemical studies with AE1 and NBCe1 indicate that both, and probably all, Slc4 members form dimers. However, the physiologic implications of dimerization have not yet been fully explored. Here, human NBCe1A dimerization is demonstrated by biomolecular fluorescence complementation (BiFC). An enhanced yellow fluorescent protein (EYFP) fragment (1-158, EYFPN) or (159 -238, EYFPC) was fused to the NH2 or COOH terminus of NBCe1A and mix-and-matched expressed in Xenopus oocyte. The EYFP fluorescent signal was observed only when both EYFP fragments are fused to the NH2 terminus of NBCe1A (EYFPN-NNBCe1A w/ EYFPC-N-NBCe1A), and the electrophysiology data demonstrated this EYFP-NBCe1A coexpressed pair have wild-type transport function. These data suggest NBCe1A forms dimers and that NH2 termini from the two monomers are in close proximity, likely pair up, to form a functional unit. To explore the physiologic significance of NBCe1 dimerization, we chose two severe NBCe1 mutations (6.6 and 20% wild-type function individually): S427L (naturally occurring) and E91R (for NH2-terminal structure studies). When we coexpressed S427L and E91R, we measured 50% wild-type function, which can only occur if the S427L-E91R heterodimer is the functional unit. We hypothesize that the dominant negative effect of heterozygous NBCe1 carrier should be obvious if the mutated residues are structurally crucial to the dimer formation. The S427L-E91R heterodimer complex allows the monomers to structurally complement each other resulting in a dimer with wild-type like function.

AB - Mutations in the electrogenic Na+/HCO3 - cotransporter (NBCe1) that cause proximal renal tubular acidosis (pRTA), glaucoma, and cataracts in patients are recessive. Parents and siblings of these affected individuals seem asymptomatic although their tissues should make some mutant NBCe1 protein. Biochemical studies with AE1 and NBCe1 indicate that both, and probably all, Slc4 members form dimers. However, the physiologic implications of dimerization have not yet been fully explored. Here, human NBCe1A dimerization is demonstrated by biomolecular fluorescence complementation (BiFC). An enhanced yellow fluorescent protein (EYFP) fragment (1-158, EYFPN) or (159 -238, EYFPC) was fused to the NH2 or COOH terminus of NBCe1A and mix-and-matched expressed in Xenopus oocyte. The EYFP fluorescent signal was observed only when both EYFP fragments are fused to the NH2 terminus of NBCe1A (EYFPN-NNBCe1A w/ EYFPC-N-NBCe1A), and the electrophysiology data demonstrated this EYFP-NBCe1A coexpressed pair have wild-type transport function. These data suggest NBCe1A forms dimers and that NH2 termini from the two monomers are in close proximity, likely pair up, to form a functional unit. To explore the physiologic significance of NBCe1 dimerization, we chose two severe NBCe1 mutations (6.6 and 20% wild-type function individually): S427L (naturally occurring) and E91R (for NH2-terminal structure studies). When we coexpressed S427L and E91R, we measured 50% wild-type function, which can only occur if the S427L-E91R heterodimer is the functional unit. We hypothesize that the dominant negative effect of heterozygous NBCe1 carrier should be obvious if the mutated residues are structurally crucial to the dimer formation. The S427L-E91R heterodimer complex allows the monomers to structurally complement each other resulting in a dimer with wild-type like function.

KW - Acid base

KW - Electrophysiology

KW - Membrane current

KW - Protein structure

KW - SLC4

KW - Xenopus oocyte

UR - http://www.scopus.com/inward/record.url?scp=84900308466&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84900308466&partnerID=8YFLogxK

U2 - 10.1152/ajprenal.00284.2013

DO - 10.1152/ajprenal.00284.2013

M3 - Article

C2 - 24477681

AN - SCOPUS:84900308466

VL - 306

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 6

ER -