N-Acetylcysteine and allopurinol up-regulated the Jak/STAT3 and PI3K/Akt pathways via adiponectin and attenuated myocardial postischemic injury in diabetes

Tingting Wang, Xiaowen Mao, Haobo Li, Shigang Qiao, Aimin Xu, Junwen Wang, Shaoqing Lei, Zipeng Liu, Kwok F.J. Ng, Gordon T. Wong, Paul M. Vanhoutte, Michael G. Irwin, Zhengyuan Xia

Research output: Contribution to journalArticlepeer-review

75 Scopus citations

Abstract

N-Acetylcysteine (NAC) and allopurinol (ALP) synergistically reduce myocardial ischemia reperfusion (MI/R) injury in diabetes. However, the mechanism is unclear. We postulated that NAC and ALP attenuated diabetic MI/R injury by up-regulating phosphatidylinositol 3-kinase/Akt (PI3K/Akt) and Janus kinase 2/signal transducer and activator of transcription-3 (JAK2/STAT3) pathways subsequent to adiponectin (APN) activation. Control (C) or streptozotocin-induced diabetic rats (D) were untreated or treated with NAC and ALP followed by MI/R. D rats displayed larger infarct size accompanied by decreased phosphorylation of Akt, STAT3 and decreased cardiac nitric oxide (NO) and APN levels. NAC and ALP decreased MI/R injury in D rats, enhanced phosphorylation of Akt and STAT3, and increased NO and APN. High glucose and hypoxia/reoxygenation exposure induced cell death and Akt and STAT3 inactivation in cultured cardiomyocytes, which were prevented by NAC and ALP. The PI3K inhibitor wortmannin and Jak2 inhibitor AG490 abolished the protection of NAC and ALP. Similarly, APN restored posthypoxic Akt and STAT3 activation and decreased cell death in cardiomyocytes. Gene silencing with AdipoR2 siRNA or STAT3 siRNA but not AdipoR1 siRNA abolished the protection of NAC and ALP. In conclusion, NAC and ALP prevented diabetic MI/R injury through PI3K/Akt and Jak2/STAT3 and cardiac APN may serve as a mediator via AdipoR2 in this process.

Original languageEnglish (US)
Pages (from-to)291-303
Number of pages13
JournalFree Radical Biology and Medicine
Volume63
DOIs
StatePublished - 2013

Keywords

  • Adiponectin
  • Antioxidants
  • Diabetes
  • Jak2/STAT3
  • Myocardial ischemia injury
  • PI3K/Akt

ASJC Scopus subject areas

  • Biochemistry
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'N-Acetylcysteine and allopurinol up-regulated the Jak/STAT3 and PI3K/Akt pathways via adiponectin and attenuated myocardial postischemic injury in diabetes'. Together they form a unique fingerprint.

Cite this