TY - JOUR
T1 - Myelofibrosis biology and contemporary management
AU - Gangat, Naseema
AU - Tefferi, Ayalew
N1 - Publisher Copyright:
© 2020 British Society for Haematology and John Wiley & Sons Ltd
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/10/1
Y1 - 2020/10/1
N2 - Myelofibrosis is an enigmatic myeloproliferative neoplasm, despite noteworthy strides in understanding its genetic underpinnings. Driver mutations involving JAK2, CALR or MPL in 90% of patients mediate constitutive JAK-STAT signaling which, in concert with epigenetic alterations (ASXL1, DNMT3A, SRSF2, EZH2, IDH1/2 mutations), play a fundamental role in disease pathogenesis. Aberrant immature megakaryocytes are a quintessential feature, exhibiting reduced GATA1 protein expression and secreting a plethora of pro-inflammatory cytokines (IL-1 ß, TGF-ß), growth factors (b-FGF, PDGF, VEGF) in addition to extra cellular matrix components (fibronectin, laminin, collagens). The ensuing disrupted interactions amongst the megakaryocytes, osteoblasts, endothelium, stromal cells and myofibroblasts within the bone marrow culminate in the development of fibrosis and osteosclerosis. Presently, prognostic assessment tools for primary myelofibrosis (PMF) are centered on genetics, with incorporation of cytogenetic and molecular information into the mutation-enhanced (MIPSS 70-plus version 2.0) and genetically-inspired (GIPSS) prognostic scoring systems. Both models illustrate substantial clinical heterogeneity in PMF and serve as the crux for risk-adapted therapeutic decisions. A major challenge remains the dearth of disease-modifying drugs, whereas allogeneic transplant offers the chance of long-term remission for some patients. Our review serves to synopsise current appreciation of the pathogenesis of myelofibrosis together with emerging management strategies.
AB - Myelofibrosis is an enigmatic myeloproliferative neoplasm, despite noteworthy strides in understanding its genetic underpinnings. Driver mutations involving JAK2, CALR or MPL in 90% of patients mediate constitutive JAK-STAT signaling which, in concert with epigenetic alterations (ASXL1, DNMT3A, SRSF2, EZH2, IDH1/2 mutations), play a fundamental role in disease pathogenesis. Aberrant immature megakaryocytes are a quintessential feature, exhibiting reduced GATA1 protein expression and secreting a plethora of pro-inflammatory cytokines (IL-1 ß, TGF-ß), growth factors (b-FGF, PDGF, VEGF) in addition to extra cellular matrix components (fibronectin, laminin, collagens). The ensuing disrupted interactions amongst the megakaryocytes, osteoblasts, endothelium, stromal cells and myofibroblasts within the bone marrow culminate in the development of fibrosis and osteosclerosis. Presently, prognostic assessment tools for primary myelofibrosis (PMF) are centered on genetics, with incorporation of cytogenetic and molecular information into the mutation-enhanced (MIPSS 70-plus version 2.0) and genetically-inspired (GIPSS) prognostic scoring systems. Both models illustrate substantial clinical heterogeneity in PMF and serve as the crux for risk-adapted therapeutic decisions. A major challenge remains the dearth of disease-modifying drugs, whereas allogeneic transplant offers the chance of long-term remission for some patients. Our review serves to synopsise current appreciation of the pathogenesis of myelofibrosis together with emerging management strategies.
KW - megakaryocytes
KW - myelofibrosis
KW - myeloproliferative
KW - prognosis
UR - http://www.scopus.com/inward/record.url?scp=85082042882&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85082042882&partnerID=8YFLogxK
U2 - 10.1111/bjh.16576
DO - 10.1111/bjh.16576
M3 - Review article
C2 - 32196650
AN - SCOPUS:85082042882
SN - 0007-1048
VL - 191
SP - 152
EP - 170
JO - British Journal of Haematology
JF - British Journal of Haematology
IS - 2
ER -