MSH3 Mismatch Repair Protein Regulates Sensitivity to Cytotoxic Drugs and a Histone Deacetylase Inhibitor in Human Colon Carcinoma Cells

Jae Myung Park, Shengbing Huang, David Tougeron, Frank A. Sinicrope

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

Background:MSH3 is a DNA mismatch repair (MMR) gene that undergoes frequent somatic mutation in colorectal cancers (CRCs) with MMR deficiency. MSH3, together with MSH2, forms the MutSβ heteroduplex that interacts with interstrand cross-links induced by drugs such as cisplatin. To date, the impact of MSH3 on chemosensitivity is unknown.Methods:We utilized isogenic HCT116 (MLH1-/MSH3-) cells where MLH1 is restored by transfer of chromosome 3 (HCT116+ch3) and also MSH3 by chromosome 5 (HCT116+3+5). We generated HCT116+3+5, SW480 (MLH1+/MSH3+) and SW48 (MLH1-/MSH3+) cells with shRNA knockdown of MSH3. Cells were treated with 5-fluorouracil (5-FU), SN-38, oxaliplatin, or the histone deacetylase (HDAC) inhibitor PCI-24781 and cell viability, clonogenic survival, DNA damage and apoptosis were analyzed.Results:MSH3-deficient vs proficient CRC cells showed increased sensitivity to the irinotecan metabolite SN-38 and to oxaliplatin, but not 5-FU, as shown in assays for apoptosis and clonogenic survival. In contrast, suppression of MLH1 attenuated the cytotoxic effect of 5-FU, but did not alter sensitivity to SN-38 or oxaliplatin. The impact of MSH3 knockdown on chemosensitivity to SN-38 and oxaliplatin was maintained independent of MLH1 status. In MSH3-deficient vs proficient cells, SN-38 and oxaliplatin induced higher levels of phosphorylated histone H2AX and Chk2, and similar results were found in MLH1-proficient SW480 cells. MSH3-deficient vs proficient cells showed increased 53BP1 nuclear foci after irradiation, suggesting that MSH3 can regulate DNA double strand break (DSB) repair. We then utilized PCI-24781 that interferes with homologous recombination (HR) indicated by a reduction in Rad51 expression. The addition of PCI-24781 to oxaliplatin enhanced cytotoxicity to a greater extent compared to either drug alone.Conclusion:MSH3 status can regulate the DNA damage response and extent of apoptosis induced by chemotherapy. The ability of MSH3 to regulate chemosensitivity was independent of MLH1 status. PCI-24781-mediated impairment of HR enhanced oxaliplatin sensitivity, suggesting that reduced DSB repair capacity may be contributory.

Original languageEnglish (US)
Article numbere65369
JournalPloS one
Volume8
Issue number5
DOIs
StatePublished - May 28 2013

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'MSH3 Mismatch Repair Protein Regulates Sensitivity to Cytotoxic Drugs and a Histone Deacetylase Inhibitor in Human Colon Carcinoma Cells'. Together they form a unique fingerprint.

Cite this