Molecularly engineered biodegradable polymer networks with a wide range of stiffness for bone and peripheral nerve regeneration

Shanfeng Wang, Diederik H.R. Kempen, Godard C.W. De Ruiter, Lei Cai, Robert J. Spinner, Anthony J. Windebank, Michael J. Yaszemski, Lichun Lu

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

To satisfy different mechanical requirements in hard and soft tissue replacements, a series of biodegradable and crosslinkable copolymers of poly(propylene fumarate)-co-polycaprolactone (PPF-co-PCL) are synthesized and employed to fabricate 2D disks and 3D scaffolds via photocrosslinking. Thermal properties such as the glass transition temperature (Tg) and melting temperature (Tm) of the PPF-co-PCL networks can be controlled efficiently by varying the PCL composition (φPCL). As a result, their mechanical properties vary significantly from hard and stiff materials to soft and flexible ones with increasing φPCL, making them attractive candidate materials for bone and peripheral nerve regeneration, respectively. Several PPF-co-PCL formulations are selected to perform in vitro cell studies using mouse pre-osteoblastic MC3T3-E1, rat Schwann cell precursor line (SPL201), and pheochromocytoma (PC12) cells, and in vivo animal testing in the rat femur bone defect model and in the rat sciatic nerve transection model. The formation of new bone in the porous bone scaffolds with a low φPCL and guided axon growth through the nerve conduits with a higher φPCL suggest that crosslinked PPF-co-PCLs have appropriate compatibility and functionality. Furthermore, the role of surface stiffness in modulating cellular behavior and functions is verified on the crosslinked PPF-co-PCL surfaces without any pretreatments.

Original languageEnglish (US)
Pages (from-to)2715-2724
Number of pages10
JournalAdvanced Functional Materials
Volume25
Issue number18
DOIs
StatePublished - May 13 2015

Keywords

  • bone tissue engineering
  • cell-material interactions
  • degradable polymers
  • peripheral nerve regeneration
  • photocrosslinkable polymers
  • stiffness

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • General Chemistry
  • Condensed Matter Physics
  • General Materials Science
  • Electrochemistry
  • Biomaterials

Fingerprint

Dive into the research topics of 'Molecularly engineered biodegradable polymer networks with a wide range of stiffness for bone and peripheral nerve regeneration'. Together they form a unique fingerprint.

Cite this