Molecular cloning of a glibenclamide-sensitive, voltage-gated potassium channel expressed in rabbit kidney

Xiaoqiang Yao, Alice Y. Chang, Emile L. Boulpaep, Alan S. Segal, Gary V. Desir

Research output: Contribution to journalArticle

49 Scopus citations

Abstract

Shaker genes encode voltage-gated potassium channels (K(v)). We have shown previously that genes from Shaker subfamilies K(v1.1, 1.2, 1.4) are expressed in rabbit kidney. Recent functional and molecular evidence indicate that the predominant potassium conductance of the kidney medullary cell line GRB-PAP1 is composed of Shaker-like potassium channels. We now report the molecular cloning and functional expression of a new Shaker-related voltage-gated potassium channel, rabK(v1.3), that is expressed in rabbit brain and kidney medulla. The protein, predicted to be 513 amino acids long, is most closely related to the K(v1.3) family although it differs significantly from other members of that family at the amino terminus. In Xenopus oocytes, rabK(v1.3) cRNA expresses a voltage activated K current with kinetic characteristics similar to other members of the K(v1.3) family. However, unlike previously described Shaker channels, it is sensitive to glibenclamide and its single channel conductance saturates. This is the first report of the functional expression of a voltage-gated K channel clone expressed in kidney. We conclude that rabK(v1.3) is a novel member of the Shaker superfamily that may play an important role in renal potassium transport.

Original languageEnglish (US)
Pages (from-to)2525-2533
Number of pages9
JournalJournal of Clinical Investigation
Volume97
Issue number11
DOIs
StatePublished - Jun 1 1996

Keywords

  • Shaker
  • glibenclamide
  • kidney
  • molecular biology
  • potassium channel

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'Molecular cloning of a glibenclamide-sensitive, voltage-gated potassium channel expressed in rabbit kidney'. Together they form a unique fingerprint.

  • Cite this