Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in human lung epithelial cells

Katelyn J. Siegrist, Steven H. Reynolds, Dale W. Porter, Robert R. Mercer, Alison K. Bauer, David Lowry, Lorenzo Cena, Todd A. Stueckle, Michael L. Kashon, John Wiley, Jeffrey L. Salisbury, John Mastovich, Kristin Bunker, Mark Sparrow, Jason S. Lupoi, Aleksandr B. Stefaniak, Michael J. Keane, Shuji Tsuruoka, Mauricio Terrones, Michael McCawleyLinda M. Sargent

Research output: Contribution to journalArticle

Abstract

Background: The unique physicochemical properties of multi-walled carbon nanotubes (MWCNT) have led to many industrial applications. Due to their low density and small size, MWCNT are easily aerosolized in the workplace making respiratory exposures likely in workers. The International Agency for Research on Cancer designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen, but there was insufficient data to classify all other MWCNT. Previously, MWCNT exposed to high temperature (MWCNT-HT) or synthesized with nitrogen (MWCNT-ND) have been found to elicit attenuated toxicity; however, their genotoxic and carcinogenic potential are not known. Our aim was to measure the genotoxicity of MWCNT-7 compared to these two physicochemically-altered MWCNTs in human lung epithelial cells (BEAS-2B & SAEC). Results: Dose-dependent partitioning of individual nanotubes in the cell nuclei was observed for each MWCNT material and was greatest for MWCNT-7. Exposure to each MWCNT led to significantly increased mitotic aberrations with multi- and monopolar spindle morphologies and fragmented centrosomes. Quantitative analysis of the spindle pole demonstrated significantly increased centrosome fragmentation from 0.024-2.4 μg/mL of each MWCNT. Significant aneuploidy was measured in a dose-response from each MWCNT-7, HT, and ND; the highest dose of 24 μg/mL produced 67, 61, and 55%, respectively. Chromosome analysis demonstrated significantly increased centromere fragmentation and translocations from each MWCNT at each dose. Following 24 h of exposure to MWCNT-7, ND and/or HT in BEAS-2B a significant arrest in the G1/S phase in the cell cycle occurred, whereas the MWCNT-ND also induced a G2 arrest. Primary SAEC exposed for 24 h to each MWCNT elicited a significantly greater arrest in the G1 and G2 phases. However, SAEC arrested in the G1/S phase after 72 h of exposure. Lastly, a significant increase in clonal growth was observed one month after exposure to 0.024 μg/mL MWCNT-HT & ND. Conclusions: Although MWCNT-HT & ND cause a lower incidence of genotoxicity, all three MWCNTs cause the same type of mitotic and chromosomal disruptions. Chromosomal fragmentation and translocations have not been observed with other nanomaterials. Because in vitro genotoxicity is correlated with in vivo genotoxic response, these studies in primary human lung cells may predict the genotoxic potency in exposed human populations.

Original languageEnglish (US)
Article number36
JournalParticle and Fibre Toxicology
Volume16
Issue number1
DOIs
StatePublished - Oct 7 2019

Fingerprint

Carbon Nanotubes
Nitrogen
Hot Temperature
Epithelial Cells
Lung
G1 Phase
Centrosome
S Phase
Cells
Spindle Poles
International Agencies
Nanotubes
Genetic Translocation
Nanostructures

Keywords

  • Aneuploidy
  • Carbon nanotubes
  • Cell cycle
  • Centromere
  • Chromosomal translocations
  • Genotoxicity
  • In vitro
  • Mitotic spindle

ASJC Scopus subject areas

  • Toxicology
  • Health, Toxicology and Mutagenesis

Cite this

Siegrist, K. J., Reynolds, S. H., Porter, D. W., Mercer, R. R., Bauer, A. K., Lowry, D., ... Sargent, L. M. (2019). Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in human lung epithelial cells. Particle and Fibre Toxicology, 16(1), [36]. https://doi.org/10.1186/s12989-019-0318-0

Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in human lung epithelial cells. / Siegrist, Katelyn J.; Reynolds, Steven H.; Porter, Dale W.; Mercer, Robert R.; Bauer, Alison K.; Lowry, David; Cena, Lorenzo; Stueckle, Todd A.; Kashon, Michael L.; Wiley, John; Salisbury, Jeffrey L.; Mastovich, John; Bunker, Kristin; Sparrow, Mark; Lupoi, Jason S.; Stefaniak, Aleksandr B.; Keane, Michael J.; Tsuruoka, Shuji; Terrones, Mauricio; McCawley, Michael; Sargent, Linda M.

In: Particle and Fibre Toxicology, Vol. 16, No. 1, 36, 07.10.2019.

Research output: Contribution to journalArticle

Siegrist, KJ, Reynolds, SH, Porter, DW, Mercer, RR, Bauer, AK, Lowry, D, Cena, L, Stueckle, TA, Kashon, ML, Wiley, J, Salisbury, JL, Mastovich, J, Bunker, K, Sparrow, M, Lupoi, JS, Stefaniak, AB, Keane, MJ, Tsuruoka, S, Terrones, M, McCawley, M & Sargent, LM 2019, 'Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in human lung epithelial cells', Particle and Fibre Toxicology, vol. 16, no. 1, 36. https://doi.org/10.1186/s12989-019-0318-0
Siegrist, Katelyn J. ; Reynolds, Steven H. ; Porter, Dale W. ; Mercer, Robert R. ; Bauer, Alison K. ; Lowry, David ; Cena, Lorenzo ; Stueckle, Todd A. ; Kashon, Michael L. ; Wiley, John ; Salisbury, Jeffrey L. ; Mastovich, John ; Bunker, Kristin ; Sparrow, Mark ; Lupoi, Jason S. ; Stefaniak, Aleksandr B. ; Keane, Michael J. ; Tsuruoka, Shuji ; Terrones, Mauricio ; McCawley, Michael ; Sargent, Linda M. / Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in human lung epithelial cells. In: Particle and Fibre Toxicology. 2019 ; Vol. 16, No. 1.
@article{a98fb38f6c544b809c8785e28d7e69cc,
title = "Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in human lung epithelial cells",
abstract = "Background: The unique physicochemical properties of multi-walled carbon nanotubes (MWCNT) have led to many industrial applications. Due to their low density and small size, MWCNT are easily aerosolized in the workplace making respiratory exposures likely in workers. The International Agency for Research on Cancer designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen, but there was insufficient data to classify all other MWCNT. Previously, MWCNT exposed to high temperature (MWCNT-HT) or synthesized with nitrogen (MWCNT-ND) have been found to elicit attenuated toxicity; however, their genotoxic and carcinogenic potential are not known. Our aim was to measure the genotoxicity of MWCNT-7 compared to these two physicochemically-altered MWCNTs in human lung epithelial cells (BEAS-2B & SAEC). Results: Dose-dependent partitioning of individual nanotubes in the cell nuclei was observed for each MWCNT material and was greatest for MWCNT-7. Exposure to each MWCNT led to significantly increased mitotic aberrations with multi- and monopolar spindle morphologies and fragmented centrosomes. Quantitative analysis of the spindle pole demonstrated significantly increased centrosome fragmentation from 0.024-2.4 μg/mL of each MWCNT. Significant aneuploidy was measured in a dose-response from each MWCNT-7, HT, and ND; the highest dose of 24 μg/mL produced 67, 61, and 55{\%}, respectively. Chromosome analysis demonstrated significantly increased centromere fragmentation and translocations from each MWCNT at each dose. Following 24 h of exposure to MWCNT-7, ND and/or HT in BEAS-2B a significant arrest in the G1/S phase in the cell cycle occurred, whereas the MWCNT-ND also induced a G2 arrest. Primary SAEC exposed for 24 h to each MWCNT elicited a significantly greater arrest in the G1 and G2 phases. However, SAEC arrested in the G1/S phase after 72 h of exposure. Lastly, a significant increase in clonal growth was observed one month after exposure to 0.024 μg/mL MWCNT-HT & ND. Conclusions: Although MWCNT-HT & ND cause a lower incidence of genotoxicity, all three MWCNTs cause the same type of mitotic and chromosomal disruptions. Chromosomal fragmentation and translocations have not been observed with other nanomaterials. Because in vitro genotoxicity is correlated with in vivo genotoxic response, these studies in primary human lung cells may predict the genotoxic potency in exposed human populations.",
keywords = "Aneuploidy, Carbon nanotubes, Cell cycle, Centromere, Chromosomal translocations, Genotoxicity, In vitro, Mitotic spindle",
author = "Siegrist, {Katelyn J.} and Reynolds, {Steven H.} and Porter, {Dale W.} and Mercer, {Robert R.} and Bauer, {Alison K.} and David Lowry and Lorenzo Cena and Stueckle, {Todd A.} and Kashon, {Michael L.} and John Wiley and Salisbury, {Jeffrey L.} and John Mastovich and Kristin Bunker and Mark Sparrow and Lupoi, {Jason S.} and Stefaniak, {Aleksandr B.} and Keane, {Michael J.} and Shuji Tsuruoka and Mauricio Terrones and Michael McCawley and Sargent, {Linda M.}",
year = "2019",
month = "10",
day = "7",
doi = "10.1186/s12989-019-0318-0",
language = "English (US)",
volume = "16",
journal = "Particle and Fibre Toxicology",
issn = "1743-8977",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in human lung epithelial cells

AU - Siegrist, Katelyn J.

AU - Reynolds, Steven H.

AU - Porter, Dale W.

AU - Mercer, Robert R.

AU - Bauer, Alison K.

AU - Lowry, David

AU - Cena, Lorenzo

AU - Stueckle, Todd A.

AU - Kashon, Michael L.

AU - Wiley, John

AU - Salisbury, Jeffrey L.

AU - Mastovich, John

AU - Bunker, Kristin

AU - Sparrow, Mark

AU - Lupoi, Jason S.

AU - Stefaniak, Aleksandr B.

AU - Keane, Michael J.

AU - Tsuruoka, Shuji

AU - Terrones, Mauricio

AU - McCawley, Michael

AU - Sargent, Linda M.

PY - 2019/10/7

Y1 - 2019/10/7

N2 - Background: The unique physicochemical properties of multi-walled carbon nanotubes (MWCNT) have led to many industrial applications. Due to their low density and small size, MWCNT are easily aerosolized in the workplace making respiratory exposures likely in workers. The International Agency for Research on Cancer designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen, but there was insufficient data to classify all other MWCNT. Previously, MWCNT exposed to high temperature (MWCNT-HT) or synthesized with nitrogen (MWCNT-ND) have been found to elicit attenuated toxicity; however, their genotoxic and carcinogenic potential are not known. Our aim was to measure the genotoxicity of MWCNT-7 compared to these two physicochemically-altered MWCNTs in human lung epithelial cells (BEAS-2B & SAEC). Results: Dose-dependent partitioning of individual nanotubes in the cell nuclei was observed for each MWCNT material and was greatest for MWCNT-7. Exposure to each MWCNT led to significantly increased mitotic aberrations with multi- and monopolar spindle morphologies and fragmented centrosomes. Quantitative analysis of the spindle pole demonstrated significantly increased centrosome fragmentation from 0.024-2.4 μg/mL of each MWCNT. Significant aneuploidy was measured in a dose-response from each MWCNT-7, HT, and ND; the highest dose of 24 μg/mL produced 67, 61, and 55%, respectively. Chromosome analysis demonstrated significantly increased centromere fragmentation and translocations from each MWCNT at each dose. Following 24 h of exposure to MWCNT-7, ND and/or HT in BEAS-2B a significant arrest in the G1/S phase in the cell cycle occurred, whereas the MWCNT-ND also induced a G2 arrest. Primary SAEC exposed for 24 h to each MWCNT elicited a significantly greater arrest in the G1 and G2 phases. However, SAEC arrested in the G1/S phase after 72 h of exposure. Lastly, a significant increase in clonal growth was observed one month after exposure to 0.024 μg/mL MWCNT-HT & ND. Conclusions: Although MWCNT-HT & ND cause a lower incidence of genotoxicity, all three MWCNTs cause the same type of mitotic and chromosomal disruptions. Chromosomal fragmentation and translocations have not been observed with other nanomaterials. Because in vitro genotoxicity is correlated with in vivo genotoxic response, these studies in primary human lung cells may predict the genotoxic potency in exposed human populations.

AB - Background: The unique physicochemical properties of multi-walled carbon nanotubes (MWCNT) have led to many industrial applications. Due to their low density and small size, MWCNT are easily aerosolized in the workplace making respiratory exposures likely in workers. The International Agency for Research on Cancer designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen, but there was insufficient data to classify all other MWCNT. Previously, MWCNT exposed to high temperature (MWCNT-HT) or synthesized with nitrogen (MWCNT-ND) have been found to elicit attenuated toxicity; however, their genotoxic and carcinogenic potential are not known. Our aim was to measure the genotoxicity of MWCNT-7 compared to these two physicochemically-altered MWCNTs in human lung epithelial cells (BEAS-2B & SAEC). Results: Dose-dependent partitioning of individual nanotubes in the cell nuclei was observed for each MWCNT material and was greatest for MWCNT-7. Exposure to each MWCNT led to significantly increased mitotic aberrations with multi- and monopolar spindle morphologies and fragmented centrosomes. Quantitative analysis of the spindle pole demonstrated significantly increased centrosome fragmentation from 0.024-2.4 μg/mL of each MWCNT. Significant aneuploidy was measured in a dose-response from each MWCNT-7, HT, and ND; the highest dose of 24 μg/mL produced 67, 61, and 55%, respectively. Chromosome analysis demonstrated significantly increased centromere fragmentation and translocations from each MWCNT at each dose. Following 24 h of exposure to MWCNT-7, ND and/or HT in BEAS-2B a significant arrest in the G1/S phase in the cell cycle occurred, whereas the MWCNT-ND also induced a G2 arrest. Primary SAEC exposed for 24 h to each MWCNT elicited a significantly greater arrest in the G1 and G2 phases. However, SAEC arrested in the G1/S phase after 72 h of exposure. Lastly, a significant increase in clonal growth was observed one month after exposure to 0.024 μg/mL MWCNT-HT & ND. Conclusions: Although MWCNT-HT & ND cause a lower incidence of genotoxicity, all three MWCNTs cause the same type of mitotic and chromosomal disruptions. Chromosomal fragmentation and translocations have not been observed with other nanomaterials. Because in vitro genotoxicity is correlated with in vivo genotoxic response, these studies in primary human lung cells may predict the genotoxic potency in exposed human populations.

KW - Aneuploidy

KW - Carbon nanotubes

KW - Cell cycle

KW - Centromere

KW - Chromosomal translocations

KW - Genotoxicity

KW - In vitro

KW - Mitotic spindle

UR - http://www.scopus.com/inward/record.url?scp=85072985442&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072985442&partnerID=8YFLogxK

U2 - 10.1186/s12989-019-0318-0

DO - 10.1186/s12989-019-0318-0

M3 - Article

C2 - 31590690

AN - SCOPUS:85072985442

VL - 16

JO - Particle and Fibre Toxicology

JF - Particle and Fibre Toxicology

SN - 1743-8977

IS - 1

M1 - 36

ER -