Mitochondrial protection partly mitigates kidney cellular senescence in swine atherosclerotic renal artery stenosis

Seo Rin Kim, Alfonso Eirin, Xin Zhang, Amir Lerman, Lilach O. Lerman

Research output: Contribution to journalArticle

5 Scopus citations

Abstract

Background/Aims: Atherosclerotic renal artery stenosis (ARAS) may cause kidney injury and mitochondrial dysfunction, which is linked to cellular senescence. Elamipretide, a mitochondria-targeted peptide, improves renal function in ARAS, but whether it alleviates senescence is unknown. We hypothesized that elamipretide would reduce senescence stenotic kidney (STK) in ARAS. Methods: Domestic pigs were randomized to control and unilateral ARAS untreated or treated with subcutaneous elamipretide (5d/wk) for 4 weeks starting after 6 weeks of ARAS or sham (n=6 each). After completion of treatment, STK renal blood flow (RBF) and glomerular filtration rate (GFR) were assessed in-vivo using multi-detector computed-tomography. Renal fibrosis and oxidative stress were analyzed in trichrome- and dihydroethidium-stained slides, respectively. Mitochondrial markers involved in the electron-transport chain (COX4, ATP/ADP ratio), biogenesis (PGC1α, PPARα), dynamics (MFN2, DRP1), and mitophagy (parkin, p62) were measured in the kidney using ELISA, western-blot, and immunohistochemistry. Cellular senescence (senescence-associated β-galactosidase and heterochromatin foci, phosphorylated-H2AX, and p16/21/53) and senescence-associated secretory phenotype (SASP; PAI-1, MCP-1, TGFβ, and TNFα) markers were studied by microscopy, quantitative reverse transcription-polymerase chain reaction, and western-blot. Results: Blood pressure was elevated whereas STK-RBF and GFR were decreased in ARAS pigs, and tissue scarring was increased. ARAS induced STK cellular senescence and accumulated dysfunctional mitochondria, which were associated with cardiolipin loss, upregulated mitochondrial biogenesis, and defective mitophagy. Elamipretide normalized STK-RBF and GFR, alleviated fibrosis and oxidative stress, and restored mitochondrial cardiolipin, biogenesis, and mitophagy in ARAS, but did not change SASP markers, and attenuated only senescence-associated β-galactosidase activity and p53 gene expression. Conclusion: Mitochondrial protection improved renal function and fibrosis in the ARAS STK, but only partly mitigated cellular senescence. This finding suggests that mitochondrial dysfunction may not be a major determinant of cellular senescence in the early stage of ARAS.

Original languageEnglish (US)
Pages (from-to)617-632
Number of pages16
JournalCellular Physiology and Biochemistry
Volume52
Issue number3
DOIs
StatePublished - 2019

Keywords

  • Atherosclerotic renal artery stenosis
  • Elamipretide
  • Mitochondria
  • Senescence

ASJC Scopus subject areas

  • Physiology

Fingerprint Dive into the research topics of 'Mitochondrial protection partly mitigates kidney cellular senescence in swine atherosclerotic renal artery stenosis'. Together they form a unique fingerprint.

  • Cite this