Mitochondrial Protection Partly Mitigates Kidney Cellular Senescence in Swine Atherosclerotic Renal Artery Stenosis

Seo Rin Kim, Alfonso Eirin, Xin Zhang, Amir Lerman, Lilach O Lerman

Research output: Contribution to journalArticle

Abstract

BACKGROUND/AIMS: Atherosclerotic renal artery stenosis (ARAS) may cause kidney injury and mitochondrial dysfunction, which is linked to cellular senescence. Elamipretide, a mitochondria-targeted peptide, improves renal function in ARAS, but whether it alleviates senescence is unknown. We hypothesized that elamipretide would reduce senescence stenotic kidney (STK) in ARAS. METHODS: Domestic pigs were randomized to control and unilateral ARAS untreated or treated with subcutaneous elamipretide (5d/wk) for 4 weeks starting after 6 weeks of ARAS or sham (n=6 each). After completion of treatment, STK renal blood flow (RBF) and glomerular filtration rate (GFR) were assessed in-vivo using multi-detector computed-tomography. Renal fibrosis and oxidative stress were analyzed in trichrome- and dihydroethidium-stained slides, respectively. Mitochondrial markers involved in the electrontransport chain (COX4, ATP/ADP ratio), biogenesis (PGC1α, PPARα), dynamics (MFN2, DRP1), and mitophagy (parkin, p62) were measured in the kidney using ELISA, western-blot, and immunohistochemistry. Cellular senescence (senescence-associated β-galactosidase and heterochromatin foci, phosphorylated-H2AX, and p16/21/53) and senescence-associated secretory phenotype (SASP; PAI-1, MCP-1, TGFβ, and TNFα) markers were studied by microscopy, quantitative reverse transcription-polymerase chain reaction, and western-blot. RESULTS: Blood pressure was elevated whereas STK-RBF and GFR were decreased in ARAS pigs, and tissue scarring was increased. ARAS induced STK cellular senescence and accumulated dysfunctional mitochondria, which were associated with cardiolipin loss, upregulated mitochondrial biogenesis, and defective mitophagy. Elamipretide normalized STK-RBF and GFR, alleviated fibrosis and oxidative stress, and restored mitochondrial cardiolipin, biogenesis, and mitophagy in ARAS, but did not change SASP markers, and attenuated only senescenceassociated β-galactosidase activity and p53 gene expression. CONCLUSION: Mitochondrial protection improved renal function and fibrosis in the ARAS STK, but only partly mitigated cellular senescence. This finding suggests that mitochondrial dysfunction may not be a major determinant of cellular senescence in the early stage of ARAS.

Original languageEnglish (US)
Pages (from-to)617-632
Number of pages16
JournalCellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
Volume52
Issue number3
DOIs
StatePublished - Jan 1 2019

Fingerprint

Renal Artery Obstruction
Cell Aging
Swine
Kidney
Mitochondrial Degradation
Renal Circulation
Glomerular Filtration Rate
Galactosidases
Cardiolipins
Fibrosis
Organelle Biogenesis
Mitochondria
Oxidative Stress
Western Blotting
Sus scrofa
Peroxisome Proliferator-Activated Receptors
Heterochromatin
Plasminogen Activator Inhibitor 1
p53 Genes
Adenosine Diphosphate

Keywords

  • Atherosclerotic renal artery stenosis
  • Elamipretide
  • Mitochondria
  • Senescence

ASJC Scopus subject areas

  • Physiology

Cite this

@article{eb49548be870403e8aff9af7b3fe1c95,
title = "Mitochondrial Protection Partly Mitigates Kidney Cellular Senescence in Swine Atherosclerotic Renal Artery Stenosis",
abstract = "BACKGROUND/AIMS: Atherosclerotic renal artery stenosis (ARAS) may cause kidney injury and mitochondrial dysfunction, which is linked to cellular senescence. Elamipretide, a mitochondria-targeted peptide, improves renal function in ARAS, but whether it alleviates senescence is unknown. We hypothesized that elamipretide would reduce senescence stenotic kidney (STK) in ARAS. METHODS: Domestic pigs were randomized to control and unilateral ARAS untreated or treated with subcutaneous elamipretide (5d/wk) for 4 weeks starting after 6 weeks of ARAS or sham (n=6 each). After completion of treatment, STK renal blood flow (RBF) and glomerular filtration rate (GFR) were assessed in-vivo using multi-detector computed-tomography. Renal fibrosis and oxidative stress were analyzed in trichrome- and dihydroethidium-stained slides, respectively. Mitochondrial markers involved in the electrontransport chain (COX4, ATP/ADP ratio), biogenesis (PGC1α, PPARα), dynamics (MFN2, DRP1), and mitophagy (parkin, p62) were measured in the kidney using ELISA, western-blot, and immunohistochemistry. Cellular senescence (senescence-associated β-galactosidase and heterochromatin foci, phosphorylated-H2AX, and p16/21/53) and senescence-associated secretory phenotype (SASP; PAI-1, MCP-1, TGFβ, and TNFα) markers were studied by microscopy, quantitative reverse transcription-polymerase chain reaction, and western-blot. RESULTS: Blood pressure was elevated whereas STK-RBF and GFR were decreased in ARAS pigs, and tissue scarring was increased. ARAS induced STK cellular senescence and accumulated dysfunctional mitochondria, which were associated with cardiolipin loss, upregulated mitochondrial biogenesis, and defective mitophagy. Elamipretide normalized STK-RBF and GFR, alleviated fibrosis and oxidative stress, and restored mitochondrial cardiolipin, biogenesis, and mitophagy in ARAS, but did not change SASP markers, and attenuated only senescenceassociated β-galactosidase activity and p53 gene expression. CONCLUSION: Mitochondrial protection improved renal function and fibrosis in the ARAS STK, but only partly mitigated cellular senescence. This finding suggests that mitochondrial dysfunction may not be a major determinant of cellular senescence in the early stage of ARAS.",
keywords = "Atherosclerotic renal artery stenosis, Elamipretide, Mitochondria, Senescence",
author = "Kim, {Seo Rin} and Alfonso Eirin and Xin Zhang and Amir Lerman and Lerman, {Lilach O}",
year = "2019",
month = "1",
day = "1",
doi = "10.33594/000000044",
language = "English (US)",
volume = "52",
pages = "617--632",
journal = "Cellular Physiology and Biochemistry",
issn = "1015-8987",
publisher = "S. Karger AG",
number = "3",

}

TY - JOUR

T1 - Mitochondrial Protection Partly Mitigates Kidney Cellular Senescence in Swine Atherosclerotic Renal Artery Stenosis

AU - Kim, Seo Rin

AU - Eirin, Alfonso

AU - Zhang, Xin

AU - Lerman, Amir

AU - Lerman, Lilach O

PY - 2019/1/1

Y1 - 2019/1/1

N2 - BACKGROUND/AIMS: Atherosclerotic renal artery stenosis (ARAS) may cause kidney injury and mitochondrial dysfunction, which is linked to cellular senescence. Elamipretide, a mitochondria-targeted peptide, improves renal function in ARAS, but whether it alleviates senescence is unknown. We hypothesized that elamipretide would reduce senescence stenotic kidney (STK) in ARAS. METHODS: Domestic pigs were randomized to control and unilateral ARAS untreated or treated with subcutaneous elamipretide (5d/wk) for 4 weeks starting after 6 weeks of ARAS or sham (n=6 each). After completion of treatment, STK renal blood flow (RBF) and glomerular filtration rate (GFR) were assessed in-vivo using multi-detector computed-tomography. Renal fibrosis and oxidative stress were analyzed in trichrome- and dihydroethidium-stained slides, respectively. Mitochondrial markers involved in the electrontransport chain (COX4, ATP/ADP ratio), biogenesis (PGC1α, PPARα), dynamics (MFN2, DRP1), and mitophagy (parkin, p62) were measured in the kidney using ELISA, western-blot, and immunohistochemistry. Cellular senescence (senescence-associated β-galactosidase and heterochromatin foci, phosphorylated-H2AX, and p16/21/53) and senescence-associated secretory phenotype (SASP; PAI-1, MCP-1, TGFβ, and TNFα) markers were studied by microscopy, quantitative reverse transcription-polymerase chain reaction, and western-blot. RESULTS: Blood pressure was elevated whereas STK-RBF and GFR were decreased in ARAS pigs, and tissue scarring was increased. ARAS induced STK cellular senescence and accumulated dysfunctional mitochondria, which were associated with cardiolipin loss, upregulated mitochondrial biogenesis, and defective mitophagy. Elamipretide normalized STK-RBF and GFR, alleviated fibrosis and oxidative stress, and restored mitochondrial cardiolipin, biogenesis, and mitophagy in ARAS, but did not change SASP markers, and attenuated only senescenceassociated β-galactosidase activity and p53 gene expression. CONCLUSION: Mitochondrial protection improved renal function and fibrosis in the ARAS STK, but only partly mitigated cellular senescence. This finding suggests that mitochondrial dysfunction may not be a major determinant of cellular senescence in the early stage of ARAS.

AB - BACKGROUND/AIMS: Atherosclerotic renal artery stenosis (ARAS) may cause kidney injury and mitochondrial dysfunction, which is linked to cellular senescence. Elamipretide, a mitochondria-targeted peptide, improves renal function in ARAS, but whether it alleviates senescence is unknown. We hypothesized that elamipretide would reduce senescence stenotic kidney (STK) in ARAS. METHODS: Domestic pigs were randomized to control and unilateral ARAS untreated or treated with subcutaneous elamipretide (5d/wk) for 4 weeks starting after 6 weeks of ARAS or sham (n=6 each). After completion of treatment, STK renal blood flow (RBF) and glomerular filtration rate (GFR) were assessed in-vivo using multi-detector computed-tomography. Renal fibrosis and oxidative stress were analyzed in trichrome- and dihydroethidium-stained slides, respectively. Mitochondrial markers involved in the electrontransport chain (COX4, ATP/ADP ratio), biogenesis (PGC1α, PPARα), dynamics (MFN2, DRP1), and mitophagy (parkin, p62) were measured in the kidney using ELISA, western-blot, and immunohistochemistry. Cellular senescence (senescence-associated β-galactosidase and heterochromatin foci, phosphorylated-H2AX, and p16/21/53) and senescence-associated secretory phenotype (SASP; PAI-1, MCP-1, TGFβ, and TNFα) markers were studied by microscopy, quantitative reverse transcription-polymerase chain reaction, and western-blot. RESULTS: Blood pressure was elevated whereas STK-RBF and GFR were decreased in ARAS pigs, and tissue scarring was increased. ARAS induced STK cellular senescence and accumulated dysfunctional mitochondria, which were associated with cardiolipin loss, upregulated mitochondrial biogenesis, and defective mitophagy. Elamipretide normalized STK-RBF and GFR, alleviated fibrosis and oxidative stress, and restored mitochondrial cardiolipin, biogenesis, and mitophagy in ARAS, but did not change SASP markers, and attenuated only senescenceassociated β-galactosidase activity and p53 gene expression. CONCLUSION: Mitochondrial protection improved renal function and fibrosis in the ARAS STK, but only partly mitigated cellular senescence. This finding suggests that mitochondrial dysfunction may not be a major determinant of cellular senescence in the early stage of ARAS.

KW - Atherosclerotic renal artery stenosis

KW - Elamipretide

KW - Mitochondria

KW - Senescence

UR - http://www.scopus.com/inward/record.url?scp=85063711847&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85063711847&partnerID=8YFLogxK

U2 - 10.33594/000000044

DO - 10.33594/000000044

M3 - Article

C2 - 30907989

AN - SCOPUS:85063711847

VL - 52

SP - 617

EP - 632

JO - Cellular Physiology and Biochemistry

JF - Cellular Physiology and Biochemistry

SN - 1015-8987

IS - 3

ER -