Microglia in frontotemporal lobar degeneration with progranulin or C9ORF72 mutations

Nobutaka Sakae, Shanu F. Roemer, Kevin F. Bieniek, Melissa E Murray, Matthew C. Baker, Koji Kasanuki, Neill R Graff Radford, Leonard Petrucelli, Marka Van Blitterswijk, Rosa V Rademakers, Dennis W Dickson

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Objective: To identify clinicopathological differences between frontotemporal lobar degeneration (FTLD) due to mutations in progranulin (FTLD-GRN) and chromosome 9 open reading frame 72 (FTLD-C9ORF72). Methods: We performed quantitative neuropathologic comparison of 17 FTLD-C9ORF72 and 15 FTLD-GRN with a focus on microglia. For clinical comparisons, only cases with high quality medical documentation and concurring diagnoses by at least two neurologists were included (14 FTLD-GRN and 13 FTLD-C9ORF72). Neuropathological analyses were limited to TDP-43 Type A to assure consistent assessment between the groups, acknowledging that Type A is a minority of C9ORF72 patients. Furthermore, only cases with sufficient tissue from all regions were studied (11 FTLD-GRN and 11 FTLD-C9ORF72). FTLD cases were also compared to age– and sex–matched normal controls. Immunohistochemistry was performed for pTDP-43, IBA-1, CD68, and GFAP. Morphological characterization of microglia was performed in sections of cortex blinded to clinical and genetic information. Results: FTLD-GRN patients had frequent asymmetric clinical features, including aphasia and apraxia, as well as more asymmetric cortical atrophy. Neuropathologically, FTLD-C9ORF72 had greater hippocampal tau pathology and more TDP-43 neuronal cytoplasmic inclusions. FTLD-GRN had more neocortical microvacuolation, as well as more IBA-1–positive ameboid microglia in superficial cortical layers and in subcortical white matter. FTLD-GRN also had more microglia with nuclear condensation, possibly indicating apoptosis. Microglial morphology with CD68 immunohistochemistry in FTLD-GRN and FTLD-C9ORF72 differed from controls. Interpretation: Our findings underscore differences in microglial response in FTLD-C9ORF72 and FTLD-GRN as shown by significant differences in ameboid microglia in gray and white matter. These results suggest the differential contribution of microglial dysfunction in FTLD-GRN and FTLD-C9ORF72 and suggest that clinical, neuroimaging and pathologic differences could in part be related to differences in microglia response.

Original languageEnglish (US)
JournalAnnals of Clinical and Translational Neurology
DOIs
StateAccepted/In press - Jan 1 2019

Fingerprint

Frontotemporal Lobar Degeneration
Microglia
Mutation
Immunohistochemistry
Apraxias

ASJC Scopus subject areas

  • Neuroscience(all)
  • Clinical Neurology

Cite this

@article{f5542a0b0ab34e50a925ec9b38ffe6e0,
title = "Microglia in frontotemporal lobar degeneration with progranulin or C9ORF72 mutations",
abstract = "Objective: To identify clinicopathological differences between frontotemporal lobar degeneration (FTLD) due to mutations in progranulin (FTLD-GRN) and chromosome 9 open reading frame 72 (FTLD-C9ORF72). Methods: We performed quantitative neuropathologic comparison of 17 FTLD-C9ORF72 and 15 FTLD-GRN with a focus on microglia. For clinical comparisons, only cases with high quality medical documentation and concurring diagnoses by at least two neurologists were included (14 FTLD-GRN and 13 FTLD-C9ORF72). Neuropathological analyses were limited to TDP-43 Type A to assure consistent assessment between the groups, acknowledging that Type A is a minority of C9ORF72 patients. Furthermore, only cases with sufficient tissue from all regions were studied (11 FTLD-GRN and 11 FTLD-C9ORF72). FTLD cases were also compared to age– and sex–matched normal controls. Immunohistochemistry was performed for pTDP-43, IBA-1, CD68, and GFAP. Morphological characterization of microglia was performed in sections of cortex blinded to clinical and genetic information. Results: FTLD-GRN patients had frequent asymmetric clinical features, including aphasia and apraxia, as well as more asymmetric cortical atrophy. Neuropathologically, FTLD-C9ORF72 had greater hippocampal tau pathology and more TDP-43 neuronal cytoplasmic inclusions. FTLD-GRN had more neocortical microvacuolation, as well as more IBA-1–positive ameboid microglia in superficial cortical layers and in subcortical white matter. FTLD-GRN also had more microglia with nuclear condensation, possibly indicating apoptosis. Microglial morphology with CD68 immunohistochemistry in FTLD-GRN and FTLD-C9ORF72 differed from controls. Interpretation: Our findings underscore differences in microglial response in FTLD-C9ORF72 and FTLD-GRN as shown by significant differences in ameboid microglia in gray and white matter. These results suggest the differential contribution of microglial dysfunction in FTLD-GRN and FTLD-C9ORF72 and suggest that clinical, neuroimaging and pathologic differences could in part be related to differences in microglia response.",
author = "Nobutaka Sakae and Roemer, {Shanu F.} and Bieniek, {Kevin F.} and Murray, {Melissa E} and Baker, {Matthew C.} and Koji Kasanuki and {Graff Radford}, {Neill R} and Leonard Petrucelli and {Van Blitterswijk}, Marka and Rademakers, {Rosa V} and Dickson, {Dennis W}",
year = "2019",
month = "1",
day = "1",
doi = "10.1002/acn3.50875",
language = "English (US)",
journal = "Annals of Clinical and Translational Neurology",
issn = "2328-9503",
publisher = "John Wiley and Sons Inc.",

}

TY - JOUR

T1 - Microglia in frontotemporal lobar degeneration with progranulin or C9ORF72 mutations

AU - Sakae, Nobutaka

AU - Roemer, Shanu F.

AU - Bieniek, Kevin F.

AU - Murray, Melissa E

AU - Baker, Matthew C.

AU - Kasanuki, Koji

AU - Graff Radford, Neill R

AU - Petrucelli, Leonard

AU - Van Blitterswijk, Marka

AU - Rademakers, Rosa V

AU - Dickson, Dennis W

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Objective: To identify clinicopathological differences between frontotemporal lobar degeneration (FTLD) due to mutations in progranulin (FTLD-GRN) and chromosome 9 open reading frame 72 (FTLD-C9ORF72). Methods: We performed quantitative neuropathologic comparison of 17 FTLD-C9ORF72 and 15 FTLD-GRN with a focus on microglia. For clinical comparisons, only cases with high quality medical documentation and concurring diagnoses by at least two neurologists were included (14 FTLD-GRN and 13 FTLD-C9ORF72). Neuropathological analyses were limited to TDP-43 Type A to assure consistent assessment between the groups, acknowledging that Type A is a minority of C9ORF72 patients. Furthermore, only cases with sufficient tissue from all regions were studied (11 FTLD-GRN and 11 FTLD-C9ORF72). FTLD cases were also compared to age– and sex–matched normal controls. Immunohistochemistry was performed for pTDP-43, IBA-1, CD68, and GFAP. Morphological characterization of microglia was performed in sections of cortex blinded to clinical and genetic information. Results: FTLD-GRN patients had frequent asymmetric clinical features, including aphasia and apraxia, as well as more asymmetric cortical atrophy. Neuropathologically, FTLD-C9ORF72 had greater hippocampal tau pathology and more TDP-43 neuronal cytoplasmic inclusions. FTLD-GRN had more neocortical microvacuolation, as well as more IBA-1–positive ameboid microglia in superficial cortical layers and in subcortical white matter. FTLD-GRN also had more microglia with nuclear condensation, possibly indicating apoptosis. Microglial morphology with CD68 immunohistochemistry in FTLD-GRN and FTLD-C9ORF72 differed from controls. Interpretation: Our findings underscore differences in microglial response in FTLD-C9ORF72 and FTLD-GRN as shown by significant differences in ameboid microglia in gray and white matter. These results suggest the differential contribution of microglial dysfunction in FTLD-GRN and FTLD-C9ORF72 and suggest that clinical, neuroimaging and pathologic differences could in part be related to differences in microglia response.

AB - Objective: To identify clinicopathological differences between frontotemporal lobar degeneration (FTLD) due to mutations in progranulin (FTLD-GRN) and chromosome 9 open reading frame 72 (FTLD-C9ORF72). Methods: We performed quantitative neuropathologic comparison of 17 FTLD-C9ORF72 and 15 FTLD-GRN with a focus on microglia. For clinical comparisons, only cases with high quality medical documentation and concurring diagnoses by at least two neurologists were included (14 FTLD-GRN and 13 FTLD-C9ORF72). Neuropathological analyses were limited to TDP-43 Type A to assure consistent assessment between the groups, acknowledging that Type A is a minority of C9ORF72 patients. Furthermore, only cases with sufficient tissue from all regions were studied (11 FTLD-GRN and 11 FTLD-C9ORF72). FTLD cases were also compared to age– and sex–matched normal controls. Immunohistochemistry was performed for pTDP-43, IBA-1, CD68, and GFAP. Morphological characterization of microglia was performed in sections of cortex blinded to clinical and genetic information. Results: FTLD-GRN patients had frequent asymmetric clinical features, including aphasia and apraxia, as well as more asymmetric cortical atrophy. Neuropathologically, FTLD-C9ORF72 had greater hippocampal tau pathology and more TDP-43 neuronal cytoplasmic inclusions. FTLD-GRN had more neocortical microvacuolation, as well as more IBA-1–positive ameboid microglia in superficial cortical layers and in subcortical white matter. FTLD-GRN also had more microglia with nuclear condensation, possibly indicating apoptosis. Microglial morphology with CD68 immunohistochemistry in FTLD-GRN and FTLD-C9ORF72 differed from controls. Interpretation: Our findings underscore differences in microglial response in FTLD-C9ORF72 and FTLD-GRN as shown by significant differences in ameboid microglia in gray and white matter. These results suggest the differential contribution of microglial dysfunction in FTLD-GRN and FTLD-C9ORF72 and suggest that clinical, neuroimaging and pathologic differences could in part be related to differences in microglia response.

UR - http://www.scopus.com/inward/record.url?scp=85070951850&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85070951850&partnerID=8YFLogxK

U2 - 10.1002/acn3.50875

DO - 10.1002/acn3.50875

M3 - Article

C2 - 31448566

AN - SCOPUS:85070951850

JO - Annals of Clinical and Translational Neurology

JF - Annals of Clinical and Translational Neurology

SN - 2328-9503

ER -