Methodologic issues in clinical evaluation of stenosis severity in adults undergoing aortic or mitral balloon valvuloplasty

Catherine M. Otto, Kathryn B. Davis, David R. Holmes, William O'Neill, James Ferguson, Thomas M. Bashore, Raoul Bonan, principal investigators echocardiographers The principal investigators echocardiographers

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Although both catheterization and Doppler measures of valvular stenosis severity have been validated, each has specific advantages and limitations, particularly in the setting of balloon valvuloplasty. Invasive valve area and mean pressure gradient recorded immediately before and after aortic (n = 589) or mitral (n = 608) catheter balloon valvuloplasty were compared with Doppler valve area and mean pressure gradient recorded <30 days before and 24 to 72 hours after the procedure. For aortic stenosis, Doppler valve area ranged from 0.1 to 1.4 cm2 before and 0.2 to 2.3 cm2 after catheter balloon valvuloplasty. Doppler and invasive aortic valve areas differed by ≤0.5 cm2 in 99% and by <0.2 cm2 in 92% of patients. Linear correlation was higher before versus after catheter balloon valvuloplasty, for both valve area (r = 0.49 vs r = 0.35, p = 0.01) and mean pressure gradient (r = 0.64 vs r = 0.50, p = 0.01). Group mean invasive valve area was slightly smaller before (0.50 vs 0.59 cm2, p < 0.0001) but was not different after (0.80 vs 0.78 cm2, p = 0.16) catheter balloon valvuloplasty. Variables affecting the valve area differences were cardiac output, aortic regurgitation, heart rate and blood pressure. Mean pressure gradient differences were related to echo quality, blood pressure and mitral regurgitation. For mitral stenosis, 2-dimensional echocardiographic valve area ranged from 0.4 to 2.8 cm2 before and 0.7 to 3.8 cm2 after catheter balloon valvuloplasty. Two-dimensional echocardiography and invasive mitral valve areas differed by ≤0.5 cm2 in 96% and by <0.2 cm2 in 81% of cases. Linear correlation was not different before versus after catheter balloon valvuloplasty for two-dimensional echocardiographic valve area (r = 0.40 vs 0.36), pressure halftime valve area (r = 0.31 vs 0.32) or mean pressure gradient (r = 0.55 vs r = 0.46). Group mean 2-dimensional echocardiography and pressure halftime valve areas were larger than invasive valve areas before (1.09 vs 1.02 cm2, p = 0.001) and smaller after (1.71 vs 2.02 cm2, p < 0.0001) catheter balloon valvuloplasty. Important variables affecting the differences were mitral regurgitation, interatrial shunt, cardiac output and heart rate. Nonsimultaneous studies, differing volume flow measurements, and the underlying accuracy of each technique largely account for discrepancies between these methods. The clinical use of each will depend on its ability to predict long-term patient outcome.

Original languageEnglish (US)
Pages (from-to)1607-1616
Number of pages10
JournalThe American journal of cardiology
Volume69
Issue number19
DOIs
StatePublished - Jun 15 1992

ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine

Fingerprint

Dive into the research topics of 'Methodologic issues in clinical evaluation of stenosis severity in adults undergoing aortic or mitral balloon valvuloplasty'. Together they form a unique fingerprint.

Cite this