TY - JOUR
T1 - Metformin requires 4E-BPs to induce apoptosis and repress translation of Mcl-1 in hepatocellular carcinoma cells
AU - Bhat, Mamatha
AU - Yanagiya, Akiko
AU - Graber, Tyson
AU - Razumilava, Nataliya
AU - Bronk, Steve
AU - Zammit, Domenick
AU - Zhao, Yunhao
AU - Zakaria, Chadi
AU - Metrakos, Peter
AU - Pollak, Michael
AU - Sonenberg, Nahum
AU - Gores, Gregory
AU - Jaramillo, Maritza
AU - Morita, Masahiro
AU - Alain, Tommy
N1 - Funding Information:
The authors would like to acknowledge the help of Dr. Joachim Mertens with the in vivo mouse model, reading of the H&E slides of this model by Dr. Victoria Owens, advice regarding apoptosis assays from Drs. Maria Guicciardi and Meztli Arguello, review of patient HCC slides by Dr. Victoria Marcus, statistical analysis by Dr. Xianming Tan and help of Mr. Nathaniel Robichaud in scanning slides. The authors also acknowledge the technical assistance of Ms. Isabelle Harvey. MB is a recipient of the Canadian Institutes for Health Research (CIHR) Fellowship for Health Professionals. MM is a recipient of a Canadian Diabetes Association Postdoctoral fellowship and CIHR Chemical Biology Postdoctoral fellowship. This research was funded by grants CIHR MOP-7214 and the Canadian Cancer Society Research Institute (#702317) to NS, NIH Grant DK59427 to GG, and Cancer Research Society and Steven E. Drabin Research Fund to TA.
Publisher Copyright:
© Bhat et al.
PY - 2017/2/7
Y1 - 2017/2/7
N2 - Metformin inhibits the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, which is frequently upregulated in hepatocellular carcinoma (HCC). Metformin has also been shown to induce apoptosis in this cancer. Here, we investigate whether metformin-induced apoptosis in HCC is mediated by the downstream mTORC1 effectors eukaryotic initiation factor 4E and (eIF4E)-binding proteins (4E-BPs). Further, we ask whether changes in 4E-BPs activity during metformin treatment negatively regulate translation of the anti-apoptotic myeloid cell leukemia 1 (Mcl-1) mRNA. A genetic HCC mouse model was employed to assess the ability of metformin to reduce tumor formation, induce apoptosis, and control 4E-BP1 activation and Mcl-1 protein expression. In parallel, the HCC cell line Huh7 was transduced with scrambled shRNA (control) or shRNAs targeting 4E-BP1 and 4E-BP2 (4E-BP knock-down (KD)) to measure differences in mRNA translation, apoptosis, and Mcl-1 protein expression after metformin treatment. In addition, immunohistochemical staining of eIF4E and 4E-BP1 protein levels was addressed in a HCC patient tissue microarray. We found that metformin decreased HCC tumor burden, and tumor tissues showed elevated apoptosis with reduced Mcl-1 and phosphorylated 4E-BP1 protein levels. In control but not 4E-BP KD Huh7 cells, metformin induced apoptosis and repressed Mcl-1 mRNA translation and protein levels. Immunostaining of HCC patient tumor tissues revealed a varying ratio of eIF4E/4E-BP1 expression. Our results propose that metformin induces apoptosis in mouse and cellular models of HCC through activation of 4E-BPs, thus tumors with elevated expression of 4E-BPs may display improved clinical chemopreventive benefit of metformin.
AB - Metformin inhibits the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, which is frequently upregulated in hepatocellular carcinoma (HCC). Metformin has also been shown to induce apoptosis in this cancer. Here, we investigate whether metformin-induced apoptosis in HCC is mediated by the downstream mTORC1 effectors eukaryotic initiation factor 4E and (eIF4E)-binding proteins (4E-BPs). Further, we ask whether changes in 4E-BPs activity during metformin treatment negatively regulate translation of the anti-apoptotic myeloid cell leukemia 1 (Mcl-1) mRNA. A genetic HCC mouse model was employed to assess the ability of metformin to reduce tumor formation, induce apoptosis, and control 4E-BP1 activation and Mcl-1 protein expression. In parallel, the HCC cell line Huh7 was transduced with scrambled shRNA (control) or shRNAs targeting 4E-BP1 and 4E-BP2 (4E-BP knock-down (KD)) to measure differences in mRNA translation, apoptosis, and Mcl-1 protein expression after metformin treatment. In addition, immunohistochemical staining of eIF4E and 4E-BP1 protein levels was addressed in a HCC patient tissue microarray. We found that metformin decreased HCC tumor burden, and tumor tissues showed elevated apoptosis with reduced Mcl-1 and phosphorylated 4E-BP1 protein levels. In control but not 4E-BP KD Huh7 cells, metformin induced apoptosis and repressed Mcl-1 mRNA translation and protein levels. Immunostaining of HCC patient tumor tissues revealed a varying ratio of eIF4E/4E-BP1 expression. Our results propose that metformin induces apoptosis in mouse and cellular models of HCC through activation of 4E-BPs, thus tumors with elevated expression of 4E-BPs may display improved clinical chemopreventive benefit of metformin.
KW - 4E-BPs
KW - Hepatocellular carcinoma
KW - MRNA translation
KW - MTORC1
KW - Metformin
UR - http://www.scopus.com/inward/record.url?scp=85026657443&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85026657443&partnerID=8YFLogxK
U2 - 10.18632/oncotarget.10671
DO - 10.18632/oncotarget.10671
M3 - Article
AN - SCOPUS:85026657443
SN - 1949-2553
VL - 8
SP - 50542
EP - 50556
JO - Oncotarget
JF - Oncotarget
IS - 31
ER -