Mesenchymal stem cell seeding of porcine small intestinal submucosal extracellular matrix for cardiovascular applications

Chia Wei Chang, Tye Petrie, Alycia Clark, Xin Lin, Claus S. Sondergaard, Leigh G. Griffiths

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

In this study, we investigate the translational potential of a novel combined construct using an FDA-approved decellularized porcine small intestinal submucosa extracellular matrix (SIS-ECM) seeded with human or porcine mesenchymal stem cells (MSCs) for cardiovascular indications. With the emerging success of individual component in various clinical applications, the combination of SIS-ECM with MSCs could provide additional therapeutic potential compared to individual components alone for cardiovascular repair. We tested the in vitro effects of MSC-seeding on SIS-ECM on resultant construct structure/function properties and MSC phenotypes. Additionally, we evaluated the ability of porcine MSCs to modulate recipient graft-specific response towards SIS-ECM in a porcine cardiac patch in vivo model. Specifically, we determined: 1) in vitro loading-capacity of human MSCs on SISECM, 2) effect of cell seeding on SIS-ECM structure, compositions and mechanical properties, 3) effect of SIS-ECM seeding on human MSC phenotypes and differentiation potential, and 4) optimal orientation and dose of porcine MSCs seeded SIS-ECM for an in vivo cardiac application. In this study, histological structure, biochemical compositions and mechanical properties of the FDA-approved SIS-ECM biomaterial were retained following MSCs repopulation in vitro. Similarly, the cellular phenotypes and differentiation potential of MSCs were preserved following seeding on SIS-ECM. In a porcine in vivo patch study, the presence of porcine MSCs on SIS-ECM significantly reduced adaptive T cell response regardless of cell dose and orientation compared to SIS-ECM alone. These findings substantiate the clinical translational potential of combined SIS-ECM seeded with MSCs as a promising therapeutic candidate for cardiac applications.

Original languageEnglish (US)
Article numbere0153412
JournalPloS one
Volume11
Issue number4
DOIs
StatePublished - Apr 2016

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Mesenchymal stem cell seeding of porcine small intestinal submucosal extracellular matrix for cardiovascular applications'. Together they form a unique fingerprint.

Cite this