Medial temporal lobe functional connectivity predicts stimulation-induced theta power

E. A. Solomon, J. E. Kragel, R. Gross, B. Lega, M. R. Sperling, G. Worrell, S. A. Sheth, K. A. Zaghloul, B. C. Jobst, J. M. Stein, S. Das, R. Gorniak, C. S. Inman, S. Seger, D. S. Rizzuto, M. J. Kahana

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Focal electrical stimulation of the brain incites a cascade of neural activity that propagates from the stimulated region to both nearby and remote areas, offering the potential to control the activity of brain networks. Understanding how exogenous electrical signals perturb such networks in humans is key to its clinical translation. To investigate this, we applied electrical stimulation to subregions of the medial temporal lobe in 26 neurosurgical patients fitted with indwelling electrodes. Networks of low-frequency (5–13 Hz) spectral coherence predicted stimulation-evoked increases in theta (5–8 Hz) power, particularly when stimulation was applied in or adjacent to white matter. Stimulation tended to decrease power in the high-frequency broadband (HFB; 50–200 Hz) range, and these modulations were correlated with HFB-based networks in a subset of subjects. Our results demonstrate that functional connectivity is predictive of causal changes in the brain, capturing evoked activity across brain regions and frequency bands.

Original languageEnglish (US)
Article number4437
JournalNature communications
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2018

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Medial temporal lobe functional connectivity predicts stimulation-induced theta power'. Together they form a unique fingerprint.

Cite this