Mechanical properties of the posterior rotator cuff

A. Halder, M. E. Zobitz, F. Schultz, K. N. An

Research output: Contribution to journalArticle

44 Citations (Scopus)

Abstract

Background. The infraspinatus is an important active and passive stabilizer of the glenohumeral joint. It functions as external rotator and participates in elevation of the arm. As its main posterior component, it is frequently involved in rotator cuff tears.Objective. The purpose of this study was to determine the structural and mechanical properties of the infraspinatus tendon structure, including the midsubstance and insertion regions, in the superior, mid-superior, mid-inferior, and inferior portions, in two joint positions. Methods. The infraspinatus tendons from 22 fresh frozen cadaver shoulders were divided into four strips. The tendons were held in a cryo-jaw and tested with a material-testing machine in 0°or 60°of glenohumeral abduction corresponding to 90°arm abduction. Ultimate load, displacement and failure mode were recorded. Stiffness, ultimate stress and elastic modulus were calculated. Results. Significant differences between glenohumeral abduction positions were detected only for the elastic modulus. The mid-superior (676.5 N, S.D. 231.0 N) and the inferior portion (549.9 N, S.D. 284.6 N) had the highest failure loads while the superior (462.8 N, S.D. 237.2 N) and the mid-inferior portions (315.3 N, S.D. 181.5 N) were weaker. Similar trends across the tendon strips were shown for stiffness, ultimate stress and elastic modulus. Relevance - Position dependent changes in mechanical properties of the infraspinatus tendon probably do not play a role in the pathomechanism of posterior shoulder dislocation. Peaks in stiffness in mid-superior and inferior tendon sections explain the low incidence of posterior dislocations. The low ultimate failure loads in the superior portions might explain the frequent extension of rotator cuff ruptures into the infraspinatus tendon. Copyright (C) 2000 Elsevier Science Ltd.

Original languageEnglish (US)
Pages (from-to)456-462
Number of pages7
JournalClinical Biomechanics
Volume15
Issue number6
DOIs
StatePublished - Jul 2000

Fingerprint

Rotator Cuff
Tendons
Elastic Modulus
Materials Testing
Shoulder Dislocation
Bursitis
Shoulder Joint
Jaw
Cadaver
Rupture
Joints
Incidence

Keywords

  • Infraspinatus
  • Posterior dislocation
  • Properties
  • Rotator cuff
  • Shoulder

ASJC Scopus subject areas

  • Orthopedics and Sports Medicine

Cite this

Halder, A., Zobitz, M. E., Schultz, F., & An, K. N. (2000). Mechanical properties of the posterior rotator cuff. Clinical Biomechanics, 15(6), 456-462. https://doi.org/10.1016/S0268-0033(99)00095-9

Mechanical properties of the posterior rotator cuff. / Halder, A.; Zobitz, M. E.; Schultz, F.; An, K. N.

In: Clinical Biomechanics, Vol. 15, No. 6, 07.2000, p. 456-462.

Research output: Contribution to journalArticle

Halder, A, Zobitz, ME, Schultz, F & An, KN 2000, 'Mechanical properties of the posterior rotator cuff', Clinical Biomechanics, vol. 15, no. 6, pp. 456-462. https://doi.org/10.1016/S0268-0033(99)00095-9
Halder, A. ; Zobitz, M. E. ; Schultz, F. ; An, K. N. / Mechanical properties of the posterior rotator cuff. In: Clinical Biomechanics. 2000 ; Vol. 15, No. 6. pp. 456-462.
@article{779d115264094f5db70d9839e941929a,
title = "Mechanical properties of the posterior rotator cuff",
abstract = "Background. The infraspinatus is an important active and passive stabilizer of the glenohumeral joint. It functions as external rotator and participates in elevation of the arm. As its main posterior component, it is frequently involved in rotator cuff tears.Objective. The purpose of this study was to determine the structural and mechanical properties of the infraspinatus tendon structure, including the midsubstance and insertion regions, in the superior, mid-superior, mid-inferior, and inferior portions, in two joint positions. Methods. The infraspinatus tendons from 22 fresh frozen cadaver shoulders were divided into four strips. The tendons were held in a cryo-jaw and tested with a material-testing machine in 0°or 60°of glenohumeral abduction corresponding to 90°arm abduction. Ultimate load, displacement and failure mode were recorded. Stiffness, ultimate stress and elastic modulus were calculated. Results. Significant differences between glenohumeral abduction positions were detected only for the elastic modulus. The mid-superior (676.5 N, S.D. 231.0 N) and the inferior portion (549.9 N, S.D. 284.6 N) had the highest failure loads while the superior (462.8 N, S.D. 237.2 N) and the mid-inferior portions (315.3 N, S.D. 181.5 N) were weaker. Similar trends across the tendon strips were shown for stiffness, ultimate stress and elastic modulus. Relevance - Position dependent changes in mechanical properties of the infraspinatus tendon probably do not play a role in the pathomechanism of posterior shoulder dislocation. Peaks in stiffness in mid-superior and inferior tendon sections explain the low incidence of posterior dislocations. The low ultimate failure loads in the superior portions might explain the frequent extension of rotator cuff ruptures into the infraspinatus tendon. Copyright (C) 2000 Elsevier Science Ltd.",
keywords = "Infraspinatus, Posterior dislocation, Properties, Rotator cuff, Shoulder",
author = "A. Halder and Zobitz, {M. E.} and F. Schultz and An, {K. N.}",
year = "2000",
month = "7",
doi = "10.1016/S0268-0033(99)00095-9",
language = "English (US)",
volume = "15",
pages = "456--462",
journal = "Clinical Biomechanics",
issn = "0268-0033",
publisher = "Elsevier Limited",
number = "6",

}

TY - JOUR

T1 - Mechanical properties of the posterior rotator cuff

AU - Halder, A.

AU - Zobitz, M. E.

AU - Schultz, F.

AU - An, K. N.

PY - 2000/7

Y1 - 2000/7

N2 - Background. The infraspinatus is an important active and passive stabilizer of the glenohumeral joint. It functions as external rotator and participates in elevation of the arm. As its main posterior component, it is frequently involved in rotator cuff tears.Objective. The purpose of this study was to determine the structural and mechanical properties of the infraspinatus tendon structure, including the midsubstance and insertion regions, in the superior, mid-superior, mid-inferior, and inferior portions, in two joint positions. Methods. The infraspinatus tendons from 22 fresh frozen cadaver shoulders were divided into four strips. The tendons were held in a cryo-jaw and tested with a material-testing machine in 0°or 60°of glenohumeral abduction corresponding to 90°arm abduction. Ultimate load, displacement and failure mode were recorded. Stiffness, ultimate stress and elastic modulus were calculated. Results. Significant differences between glenohumeral abduction positions were detected only for the elastic modulus. The mid-superior (676.5 N, S.D. 231.0 N) and the inferior portion (549.9 N, S.D. 284.6 N) had the highest failure loads while the superior (462.8 N, S.D. 237.2 N) and the mid-inferior portions (315.3 N, S.D. 181.5 N) were weaker. Similar trends across the tendon strips were shown for stiffness, ultimate stress and elastic modulus. Relevance - Position dependent changes in mechanical properties of the infraspinatus tendon probably do not play a role in the pathomechanism of posterior shoulder dislocation. Peaks in stiffness in mid-superior and inferior tendon sections explain the low incidence of posterior dislocations. The low ultimate failure loads in the superior portions might explain the frequent extension of rotator cuff ruptures into the infraspinatus tendon. Copyright (C) 2000 Elsevier Science Ltd.

AB - Background. The infraspinatus is an important active and passive stabilizer of the glenohumeral joint. It functions as external rotator and participates in elevation of the arm. As its main posterior component, it is frequently involved in rotator cuff tears.Objective. The purpose of this study was to determine the structural and mechanical properties of the infraspinatus tendon structure, including the midsubstance and insertion regions, in the superior, mid-superior, mid-inferior, and inferior portions, in two joint positions. Methods. The infraspinatus tendons from 22 fresh frozen cadaver shoulders were divided into four strips. The tendons were held in a cryo-jaw and tested with a material-testing machine in 0°or 60°of glenohumeral abduction corresponding to 90°arm abduction. Ultimate load, displacement and failure mode were recorded. Stiffness, ultimate stress and elastic modulus were calculated. Results. Significant differences between glenohumeral abduction positions were detected only for the elastic modulus. The mid-superior (676.5 N, S.D. 231.0 N) and the inferior portion (549.9 N, S.D. 284.6 N) had the highest failure loads while the superior (462.8 N, S.D. 237.2 N) and the mid-inferior portions (315.3 N, S.D. 181.5 N) were weaker. Similar trends across the tendon strips were shown for stiffness, ultimate stress and elastic modulus. Relevance - Position dependent changes in mechanical properties of the infraspinatus tendon probably do not play a role in the pathomechanism of posterior shoulder dislocation. Peaks in stiffness in mid-superior and inferior tendon sections explain the low incidence of posterior dislocations. The low ultimate failure loads in the superior portions might explain the frequent extension of rotator cuff ruptures into the infraspinatus tendon. Copyright (C) 2000 Elsevier Science Ltd.

KW - Infraspinatus

KW - Posterior dislocation

KW - Properties

KW - Rotator cuff

KW - Shoulder

UR - http://www.scopus.com/inward/record.url?scp=0034126121&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034126121&partnerID=8YFLogxK

U2 - 10.1016/S0268-0033(99)00095-9

DO - 10.1016/S0268-0033(99)00095-9

M3 - Article

C2 - 10771125

AN - SCOPUS:0034126121

VL - 15

SP - 456

EP - 462

JO - Clinical Biomechanics

JF - Clinical Biomechanics

SN - 0268-0033

IS - 6

ER -