Measurement of surface contact area of the ankle joint

Hideji Kura, Harold B. Kitaoka, Zong Ping Luo, Kai Nan An

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

Objective. To determine the distribution of contact area of the ankle joint with axial loading and in positions of maximal dorsiflexion, plantar flexion, supination, and pronation. We also tested the effects of extrinsic tendon loading and arch instability. Design. Nine cadaveric feet were studied in the intact condition and following transection of ligaments to create arch instability. Background. Assessment of ankle contact in various joint positions and degrees of instability is difficult to accomplish with conventional methods. Methods. Displacement of the talus rotative to the tibia was measured with a magnetic tracking device and tibiotalar joint contact from proximity calculations of digitized joint surfaces. Results. Contact area did not change significantly from unloaded condition to 667 N load condition in the medial, central, and lateral zones. Central zone contact area decreased in plantar flexion by an average of 324 mm2 (SD, 165 mm2) (P = 0.0004). Medial zone contact area decreased in plantar flexion by a mean of 55 mm2 (SD, 28 mm2) (P = 0.0004), decreased in pronation by an average of 42 mm2 (SD, 36 mm2) (P = 0.0086), and increased in supination by an average of 20 mm2 (SD, 26 mm2) (P = 0.0430). Lateral zone contact decreased in plantar flexion by a mean of 124 mm2 (SD, 57 mm2) (P = 0.0002). Conclusions. In plantar flexion, there was a decrease in contact area. Loading extrinsic tendons to the foot did not significantly increase ankle contact area, but arch instability caused a decrease in central and lateral zone contact area.

Original languageEnglish (US)
Pages (from-to)365-370
Number of pages6
JournalClinical Biomechanics
Volume13
Issue number4-5
DOIs
StatePublished - Jun 1998

Keywords

  • Ankle
  • Biomechanics
  • Foot
  • Joint
  • Joint contact
  • Range of motion

ASJC Scopus subject areas

  • Biophysics
  • Orthopedics and Sports Medicine

Fingerprint

Dive into the research topics of 'Measurement of surface contact area of the ankle joint'. Together they form a unique fingerprint.

Cite this