Measurement of pulsatile insulin secretion in the rat: Direct sampling from the hepatic portal vein

Aleksey V. Matveyenko, Johannes D. Veldhuis, Peter C. Butler

Research output: Contribution to journalArticle

27 Scopus citations

Abstract

It has previously been shown that insulin is secreted in discrete secretory bursts by sampling directly from the portal vein in the dog and humans. Deficient pulsatile insulin secretion is the basis for impaired insulin secretion in type 2 diabetes. However, while novel genetically modified disease models of diabetes are being developed in rodents, no validated method for quantifying pulsatile insulin secretion has been established for rodents. To address this we 1) developed a novel rat model with chronically implanted portal vein catheters, 2) established the parameters to permit deconvolution of portal vein insulin concentrations profiles to measure insulin secretion and resolve its pulsatile components, and 3) measured total and pulsatile insulin secretion compared with that in the dog, the species in which this sampling and deconvolution approach was validated for quantifying pulsatile insulin secretion. In rats, portal vein catheter patency and function were maintained for periods up to 2-3 wk with no postoperative complications such as catheter tract infection. Rat portal vein insulin concentration profiles in the fasting state revealed distinct insulin oscillations with a periodicity of ∼5 min and an amplitude of up to 600 pmol/l, which was remarkably similar to that in the dogs and in humans. Deconvolution analysis of portal vein insulin concentrations revealed that the majority of insulin (∼70%) in the rat is secreted in distinct insulin pulses occurring at ∼5-min intervals. This model therefore permits direct accurate measurments of pulsatile insulin secretion in a relatively inexpensive animal. With increased introduction of genetically modified rat models will be an important tool in elucidating the underlying mechanisms of impaired pulsatile insulin secretion in diabetes.

Original languageEnglish (US)
Pages (from-to)E569-E574
JournalAmerican Journal of Physiology - Endocrinology and Metabolism
Volume295
Issue number3
DOIs
StatePublished - Sep 1 2008

Keywords

  • Deconvolution
  • Pulse mass

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Physiology
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Measurement of pulsatile insulin secretion in the rat: Direct sampling from the hepatic portal vein'. Together they form a unique fingerprint.

  • Cite this