Mathematical modeling of mechanisms underlying ACh-induced [Ca2+]i oscillations in tracheal smooth muscle

M. G. Aguayo, Y.s. Prakash, M. S. Kannan, Gary C Sieck

Research output: Contribution to journalArticle

Abstract

In porcine tracheal smooth muscle (TSM) cells, ACh induces [Ca2+]i oscillations, which reflect Ca2+ release through ryanodine receptor (RyR) channels in the sarcoplasmic reticulum (SR). These ACh-induced [Ca2+]i oscillations display an initial period of faster oscillations followed by a slower steady state phase. This biphasic pattern may reflect either the dynamic release kinetics of RyR channels (one-compartment model) or the interactive influence of RyR mediated Ca2+ release and other Ca2+ regulatory mechanisms (two-compartment model). These alternative models were simulated under 2 experimental conditions: 1) intact TSM cells, where all Ca2+ regulatory mechanisms were present, and 2) β-escin permeabilized cells where the influence of Ca2+ influx and efflux was eliminated. Initial model parameters were constrained based on previously reported values. We found that a two-compartment model best fits the biphasic pattern of ACh-induced [Ca2+]i oscillations in intact TSM cells, consistent with the involvement of more than RyR channels. When the influence of Ca2+ influx and efflux were removed in β-escin permeabilized TSM cells, ACh-induced [Ca2+]i oscillations could be modeled by one-compartment. Similarly, a one-compartment model adequately represented the steady state phase of ACh-induced [Ca2+]i oscillations. We conclude that dynamic modulation of ACh-induced [Ca2+]i oscillations involves Ca2+ regulatory mechanisms other than RyR mediated Ca2+ release.

Original languageEnglish (US)
JournalFASEB Journal
Volume12
Issue number5
StatePublished - Mar 20 1998
Externally publishedYes

Fingerprint

Ryanodine Receptor Calcium Release Channel
smooth muscle
Smooth Muscle
Muscle
oscillation
mathematical models
Smooth Muscle Myocytes
calcium
Escin
ryanodine receptors
myocytes
Sarcoplasmic Reticulum
Swine
Cells
Modulation
Kinetics
sarcoplasmic reticulum

ASJC Scopus subject areas

  • Agricultural and Biological Sciences (miscellaneous)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Biochemistry
  • Cell Biology

Cite this

Mathematical modeling of mechanisms underlying ACh-induced [Ca2+]i oscillations in tracheal smooth muscle. / Aguayo, M. G.; Prakash, Y.s.; Kannan, M. S.; Sieck, Gary C.

In: FASEB Journal, Vol. 12, No. 5, 20.03.1998.

Research output: Contribution to journalArticle

@article{14f62a3b49fb49a28cf39ed7d68a2a21,
title = "Mathematical modeling of mechanisms underlying ACh-induced [Ca2+]i oscillations in tracheal smooth muscle",
abstract = "In porcine tracheal smooth muscle (TSM) cells, ACh induces [Ca2+]i oscillations, which reflect Ca2+ release through ryanodine receptor (RyR) channels in the sarcoplasmic reticulum (SR). These ACh-induced [Ca2+]i oscillations display an initial period of faster oscillations followed by a slower steady state phase. This biphasic pattern may reflect either the dynamic release kinetics of RyR channels (one-compartment model) or the interactive influence of RyR mediated Ca2+ release and other Ca2+ regulatory mechanisms (two-compartment model). These alternative models were simulated under 2 experimental conditions: 1) intact TSM cells, where all Ca2+ regulatory mechanisms were present, and 2) β-escin permeabilized cells where the influence of Ca2+ influx and efflux was eliminated. Initial model parameters were constrained based on previously reported values. We found that a two-compartment model best fits the biphasic pattern of ACh-induced [Ca2+]i oscillations in intact TSM cells, consistent with the involvement of more than RyR channels. When the influence of Ca2+ influx and efflux were removed in β-escin permeabilized TSM cells, ACh-induced [Ca2+]i oscillations could be modeled by one-compartment. Similarly, a one-compartment model adequately represented the steady state phase of ACh-induced [Ca2+]i oscillations. We conclude that dynamic modulation of ACh-induced [Ca2+]i oscillations involves Ca2+ regulatory mechanisms other than RyR mediated Ca2+ release.",
author = "Aguayo, {M. G.} and Y.s. Prakash and Kannan, {M. S.} and Sieck, {Gary C}",
year = "1998",
month = "3",
day = "20",
language = "English (US)",
volume = "12",
journal = "FASEB Journal",
issn = "0892-6638",
publisher = "FASEB",
number = "5",

}

TY - JOUR

T1 - Mathematical modeling of mechanisms underlying ACh-induced [Ca2+]i oscillations in tracheal smooth muscle

AU - Aguayo, M. G.

AU - Prakash, Y.s.

AU - Kannan, M. S.

AU - Sieck, Gary C

PY - 1998/3/20

Y1 - 1998/3/20

N2 - In porcine tracheal smooth muscle (TSM) cells, ACh induces [Ca2+]i oscillations, which reflect Ca2+ release through ryanodine receptor (RyR) channels in the sarcoplasmic reticulum (SR). These ACh-induced [Ca2+]i oscillations display an initial period of faster oscillations followed by a slower steady state phase. This biphasic pattern may reflect either the dynamic release kinetics of RyR channels (one-compartment model) or the interactive influence of RyR mediated Ca2+ release and other Ca2+ regulatory mechanisms (two-compartment model). These alternative models were simulated under 2 experimental conditions: 1) intact TSM cells, where all Ca2+ regulatory mechanisms were present, and 2) β-escin permeabilized cells where the influence of Ca2+ influx and efflux was eliminated. Initial model parameters were constrained based on previously reported values. We found that a two-compartment model best fits the biphasic pattern of ACh-induced [Ca2+]i oscillations in intact TSM cells, consistent with the involvement of more than RyR channels. When the influence of Ca2+ influx and efflux were removed in β-escin permeabilized TSM cells, ACh-induced [Ca2+]i oscillations could be modeled by one-compartment. Similarly, a one-compartment model adequately represented the steady state phase of ACh-induced [Ca2+]i oscillations. We conclude that dynamic modulation of ACh-induced [Ca2+]i oscillations involves Ca2+ regulatory mechanisms other than RyR mediated Ca2+ release.

AB - In porcine tracheal smooth muscle (TSM) cells, ACh induces [Ca2+]i oscillations, which reflect Ca2+ release through ryanodine receptor (RyR) channels in the sarcoplasmic reticulum (SR). These ACh-induced [Ca2+]i oscillations display an initial period of faster oscillations followed by a slower steady state phase. This biphasic pattern may reflect either the dynamic release kinetics of RyR channels (one-compartment model) or the interactive influence of RyR mediated Ca2+ release and other Ca2+ regulatory mechanisms (two-compartment model). These alternative models were simulated under 2 experimental conditions: 1) intact TSM cells, where all Ca2+ regulatory mechanisms were present, and 2) β-escin permeabilized cells where the influence of Ca2+ influx and efflux was eliminated. Initial model parameters were constrained based on previously reported values. We found that a two-compartment model best fits the biphasic pattern of ACh-induced [Ca2+]i oscillations in intact TSM cells, consistent with the involvement of more than RyR channels. When the influence of Ca2+ influx and efflux were removed in β-escin permeabilized TSM cells, ACh-induced [Ca2+]i oscillations could be modeled by one-compartment. Similarly, a one-compartment model adequately represented the steady state phase of ACh-induced [Ca2+]i oscillations. We conclude that dynamic modulation of ACh-induced [Ca2+]i oscillations involves Ca2+ regulatory mechanisms other than RyR mediated Ca2+ release.

UR - http://www.scopus.com/inward/record.url?scp=33749218609&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33749218609&partnerID=8YFLogxK

M3 - Article

VL - 12

JO - FASEB Journal

JF - FASEB Journal

SN - 0892-6638

IS - 5

ER -