Liver elasticity and viscosity quantification using shearwave dispersion ultrasound vibrometry (SDUV).

Research output: Contribution to journalArticle

Abstract

Noninvasive quantification of liver elasticity is a promising alternative to liver biopsy to stage liver fibrosis, a condition afflicting hundreds of millions of patients worldwide. Quantitative measurement of elasticity (in unit of Pascal) is required in this application because liver fibrosis is a diffuse disease where abnormality is not confined to a local region and there is no normal background tissue to provide contrast. SDUV uses an ultrasound "push" beam to stimulate formation of propagating harmonic shear waves in the studied tissue. The propagation speed of induced shear waves is frequency dependent (dispersive) and relates to the tissue's mechanical properties. Shear wave speeds at multiple frequencies (typically hundreds of Hertz) are measured by a separate ultrasound "detect" beam in pulse echo mode and fit with a theoretical dispersion model to inversely solve for tissue elasticity and viscosity. A special pulse sequence has been developed to facilitate a single ultrasound array transducer for both push and detect function, which makes SDUV compatible with current ultrasound scanners. Feasibility of this pulse sequence is demonstrated by in vivo SDUV measurements in porcine liver using a dual transducer prototype.

Fingerprint

Elasticity
Viscosity
Liver
Ultrasonics
Transducers
Shear waves
Liver Cirrhosis
Tissue
Theoretical Models
Swine
Biopsy
Mechanical properties

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Cite this

@article{aa0756b8572847a7a42eed39b402483b,
title = "Liver elasticity and viscosity quantification using shearwave dispersion ultrasound vibrometry (SDUV).",
abstract = "Noninvasive quantification of liver elasticity is a promising alternative to liver biopsy to stage liver fibrosis, a condition afflicting hundreds of millions of patients worldwide. Quantitative measurement of elasticity (in unit of Pascal) is required in this application because liver fibrosis is a diffuse disease where abnormality is not confined to a local region and there is no normal background tissue to provide contrast. SDUV uses an ultrasound {"}push{"} beam to stimulate formation of propagating harmonic shear waves in the studied tissue. The propagation speed of induced shear waves is frequency dependent (dispersive) and relates to the tissue's mechanical properties. Shear wave speeds at multiple frequencies (typically hundreds of Hertz) are measured by a separate ultrasound {"}detect{"} beam in pulse echo mode and fit with a theoretical dispersion model to inversely solve for tissue elasticity and viscosity. A special pulse sequence has been developed to facilitate a single ultrasound array transducer for both push and detect function, which makes SDUV compatible with current ultrasound scanners. Feasibility of this pulse sequence is demonstrated by in vivo SDUV measurements in porcine liver using a dual transducer prototype.",
author = "Shigao Chen and Urban, {Matthew W.} and Cristina Pislaru and Randall Kinnick and Greenleaf, {James F.}",
year = "2009",
language = "English (US)",
pages = "2252--2255",
journal = "Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference",
issn = "1557-170X",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

TY - JOUR

T1 - Liver elasticity and viscosity quantification using shearwave dispersion ultrasound vibrometry (SDUV).

AU - Chen, Shigao

AU - Urban, Matthew W.

AU - Pislaru, Cristina

AU - Kinnick, Randall

AU - Greenleaf, James F.

PY - 2009

Y1 - 2009

N2 - Noninvasive quantification of liver elasticity is a promising alternative to liver biopsy to stage liver fibrosis, a condition afflicting hundreds of millions of patients worldwide. Quantitative measurement of elasticity (in unit of Pascal) is required in this application because liver fibrosis is a diffuse disease where abnormality is not confined to a local region and there is no normal background tissue to provide contrast. SDUV uses an ultrasound "push" beam to stimulate formation of propagating harmonic shear waves in the studied tissue. The propagation speed of induced shear waves is frequency dependent (dispersive) and relates to the tissue's mechanical properties. Shear wave speeds at multiple frequencies (typically hundreds of Hertz) are measured by a separate ultrasound "detect" beam in pulse echo mode and fit with a theoretical dispersion model to inversely solve for tissue elasticity and viscosity. A special pulse sequence has been developed to facilitate a single ultrasound array transducer for both push and detect function, which makes SDUV compatible with current ultrasound scanners. Feasibility of this pulse sequence is demonstrated by in vivo SDUV measurements in porcine liver using a dual transducer prototype.

AB - Noninvasive quantification of liver elasticity is a promising alternative to liver biopsy to stage liver fibrosis, a condition afflicting hundreds of millions of patients worldwide. Quantitative measurement of elasticity (in unit of Pascal) is required in this application because liver fibrosis is a diffuse disease where abnormality is not confined to a local region and there is no normal background tissue to provide contrast. SDUV uses an ultrasound "push" beam to stimulate formation of propagating harmonic shear waves in the studied tissue. The propagation speed of induced shear waves is frequency dependent (dispersive) and relates to the tissue's mechanical properties. Shear wave speeds at multiple frequencies (typically hundreds of Hertz) are measured by a separate ultrasound "detect" beam in pulse echo mode and fit with a theoretical dispersion model to inversely solve for tissue elasticity and viscosity. A special pulse sequence has been developed to facilitate a single ultrasound array transducer for both push and detect function, which makes SDUV compatible with current ultrasound scanners. Feasibility of this pulse sequence is demonstrated by in vivo SDUV measurements in porcine liver using a dual transducer prototype.

UR - http://www.scopus.com/inward/record.url?scp=84903871168&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84903871168&partnerID=8YFLogxK

M3 - Article

C2 - 19965159

SP - 2252

EP - 2255

JO - Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

JF - Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

SN - 1557-170X

ER -