Linear trimer analogues of calixarene as chiral coordinating ligands: X-ray crystallographic and NMR spectroscopic characterization of chiral and achiral trisphenolates complexed to titanium(IV) and aluminum(III)

William O. Appiah, Angela D. DeGreeff, Gina L. Razidlo, Sarah J. Spessard, Maren Pink, Victor G. Young, Gretchen E. Hofmeister

Research output: Contribution to journalArticle

23 Scopus citations


Achiral and chiral linear trisphenol analogues of calixarene (HOArCH2Ar′(OH)C(R)HArOH, Ar = 4,6-di-tert-butylphenyl; Ar′ = 4-tert-butylphenyl; R = H (achiral), Me (chiral)) were prepared in anticipation of their adoption of a chiral conformation upon coordination to Lewis acidic metal centers. The trisphenols react with 1 equiv of Ti(OR′)4 (R′ = i-Pr or t-Bu) to yield complexes with molecular formula Ti2(OArCH2Ar′(O)C(R)HArO)2 (OR′)2 (R = H, Me; R′ = i-Pr or t-Bu). An X-ray crystal structure of the titanium complex of the achiral trisphenol (R = H; R′ = t-Bu) reveals that the trisphenolate ligand adopts an unsymmetrical (and therefore chiral) conformation, with η2-coordination to one metal center and η1-coordination to the second metal center. The chiral trisphenol, which contains a stereogenic center (indicated as C in the shorthand notation used above), coordinates titanium in an analogous fashion to produce only one diastereomer (out of four possible); therefore, the configuration of the stereogenic center controls the conformation adopted by the bound ligand. The reaction of achiral trisphenol with AlMe3 produces a compound with molecular formula Al2(OArCH2Ar′(O)CH2ArO)2. 1H NMR spectroscopy and X-ray crystallography reveal that the trisphenolate ligand adopts an asymmetric, C2 conformation in this complex, where the central phenolate oxygen bridges the aluminum centers and the terminal phenolate oxygens each coordinate a separate aluminum center. Because these trisphenolate ligands adopt chiral conformations when coordinated to metal centers, they may be useful for developing diastereo- or enantioselective catalysts and reagents.

Original languageEnglish (US)
Pages (from-to)3656-3667
Number of pages12
JournalInorganic Chemistry
Issue number14
StatePublished - Jul 15 2002


ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Cite this