Abstract
The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification.
Original language | English (US) |
---|---|
Pages (from-to) | 1557-1578 |
Number of pages | 22 |
Journal | Human mutation |
Volume | 40 |
Issue number | 9 |
DOIs | |
State | Published - Sep 1 2019 |
Keywords
- BRCA1
- BRCA2
- classification
- clinical
- multifactorial
- quantitative
- uncertain significance
- variant
ASJC Scopus subject areas
- Genetics
- Genetics(clinical)
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants : An ENIGMA resource to support clinical variant classification. / Parsons, Michael T.; Tudini, Emma; Li, Hongyan et al.
In: Human mutation, Vol. 40, No. 9, 01.09.2019, p. 1557-1578.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants
T2 - An ENIGMA resource to support clinical variant classification
AU - Parsons, Michael T.
AU - Tudini, Emma
AU - Li, Hongyan
AU - Hahnen, Eric
AU - Wappenschmidt, Barbara
AU - Feliubadaló, Lidia
AU - Aalfs, Cora M.
AU - Agata, Simona
AU - Aittomäki, Kristiina
AU - Alducci, Elisa
AU - Alonso-Cerezo, María Concepción
AU - Arnold, Norbert
AU - Auber, Bernd
AU - Austin, Rachel
AU - Azzollini, Jacopo
AU - Balmaña, Judith
AU - Barbieri, Elena
AU - Bartram, Claus R.
AU - Blanco, Ana
AU - Blümcke, Britta
AU - Bonache, Sandra
AU - Bonanni, Bernardo
AU - Borg, Åke
AU - Bortesi, Beatrice
AU - Brunet, Joan
AU - Bruzzone, Carla
AU - Bucksch, Karolin
AU - Cagnoli, Giulia
AU - Caldés, Trinidad
AU - Caliebe, Almuth
AU - Caligo, Maria A.
AU - Calvello, Mariarosaria
AU - Capone, Gabriele L.
AU - Caputo, Sandrine M.
AU - Carnevali, Ileana
AU - Carrasco, Estela
AU - Caux-Moncoutier, Virginie
AU - Cavalli, Pietro
AU - Cini, Giulia
AU - Clarke, Edward M.
AU - Concolino, Paola
AU - Cops, Elisa J.
AU - Cortesi, Laura
AU - Couch, Fergus J.
AU - Darder, Esther
AU - de la Hoya, Miguel
AU - Dean, Michael
AU - Debatin, Irmgard
AU - Del Valle, Jesús
AU - Delnatte, Capucine
AU - Derive, Nicolas
AU - Diez, Orland
AU - Ditsch, Nina
AU - Domchek, Susan M.
AU - Dutrannoy, Véronique
AU - Eccles, Diana M.
AU - Ehrencrona, Hans
AU - Enders, Ute
AU - Evans, D. Gareth
AU - Farra, Chantal
AU - Faust, Ulrike
AU - Felbor, Ute
AU - Feroce, Irene
AU - Fine, Miriam
AU - Foulkes, William D.
AU - Galvao, Henrique C.R.
AU - Gambino, Gaetana
AU - Gehrig, Andrea
AU - Gensini, Francesca
AU - Gerdes, Anne Marie
AU - Germani, Aldo
AU - Giesecke, Jutta
AU - Gismondi, Viviana
AU - Gómez, Carolina
AU - Gómez Garcia, Encarna B.
AU - González, Sara
AU - Grau, Elia
AU - Grill, Sabine
AU - Gross, Eva
AU - Guerrieri-Gonzaga, Aliana
AU - Guillaud-Bataille, Marine
AU - Gutiérrez-Enríquez, Sara
AU - Haaf, Thomas
AU - Hackmann, Karl
AU - Hansen, Thomas V.O.
AU - Harris, Marion
AU - Hauke, Jan
AU - Heinrich, Tilman
AU - Hellebrand, Heide
AU - Herold, Karen N.
AU - Honisch, Ellen
AU - Horvath, Judit
AU - Houdayer, Claude
AU - Hübbel, Verena
AU - Iglesias, Silvia
AU - Izquierdo, Angel
AU - James, Paul A.
AU - Janssen, Linda A.M.
AU - Jeschke, Udo
AU - Kaulfuß, Silke
AU - Keupp, Katharina
AU - Kiechle, Marion
AU - Kölbl, Alexandra
AU - Krieger, Sophie
AU - Kruse, Torben A.
AU - Kvist, Anders
AU - Lalloo, Fiona
AU - Larsen, Mirjam
AU - Lattimore, Vanessa L.
AU - Lautrup, Charlotte
AU - Ledig, Susanne
AU - Leinert, Elena
AU - Lewis, Alexandra L.
AU - Lim, Joanna
AU - Loeffler, Markus
AU - López-Fernández, Adrià
AU - Lucci-Cordisco, Emanuela
AU - Maass, Nicolai
AU - Manoukian, Siranoush
AU - Marabelli, Monica
AU - Matricardi, Laura
AU - Meindl, Alfons
AU - Michelli, Rodrigo D.
AU - Moghadasi, Setareh
AU - Moles-Fernández, Alejandro
AU - Montagna, Marco
AU - Montalban, Gemma
AU - Monteiro, Alvaro N.
AU - Montes, Eva
AU - Mori, Luigi
AU - Moserle, Lidia
AU - Müller, Clemens R.
AU - Mundhenke, Christoph
AU - Naldi, Nadia
AU - Nathanson, Katherine L.
AU - Navarro, Matilde
AU - Nevanlinna, Heli
AU - Nichols, Cassandra B.
AU - Niederacher, Dieter
AU - Nielsen, Henriette R.
AU - Ong, Kai ren
AU - Pachter, Nicholas
AU - Palmero, Edenir I.
AU - Papi, Laura
AU - Pedersen, Inge Sokilde
AU - Peissel, Bernard
AU - Perez-Segura, Pedro
AU - Pfeifer, Katharina
AU - Pineda, Marta
AU - Pohl-Rescigno, Esther
AU - Poplawski, Nicola K.
AU - Porfirio, Berardino
AU - Quante, Anne S.
AU - Ramser, Juliane
AU - Reis, Rui M.
AU - Revillion, Françoise
AU - Rhiem, Kerstin
AU - Riboli, Barbara
AU - Ritter, Julia
AU - Rivera, Daniela
AU - Rofes, Paula
AU - Rump, Andreas
AU - Salinas, Monica
AU - Sánchez de Abajo, Ana María
AU - Schmidt, Gunnar
AU - Schoenwiese, Ulrike
AU - Seggewiß, Jochen
AU - Solanes, Ares
AU - Steinemann, Doris
AU - Stiller, Mathias
AU - Stoppa-Lyonnet, Dominique
AU - Sullivan, Kelly J.
AU - Susman, Rachel
AU - Sutter, Christian
AU - Tavtigian, Sean V.
AU - Teo, Soo H.
AU - Teulé, Alex
AU - Thomassen, Mads
AU - Tibiletti, Maria Grazia
AU - Tischkowitz, Marc
AU - Tognazzo, Silvia
AU - Toland, Amanda E.
AU - Tornero, Eva
AU - Törngren, Therese
AU - Torres-Esquius, Sara
AU - Toss, Angela
AU - Trainer, Alison H.
AU - Tucker, Katherine M.
AU - van Asperen, Christi J.
AU - van Mackelenbergh, Marion T.
AU - Varesco, Liliana
AU - Vargas-Parra, Gardenia
AU - Varon, Raymonda
AU - Vega, Ana
AU - Velasco, Ángela
AU - Vesper, Anne Sophie
AU - Viel, Alessandra
AU - Vreeswijk, Maaike P.G.
AU - Wagner, Sebastian A.
AU - Waha, Anke
AU - Walker, Logan C.
AU - Walters, Rhiannon J.
AU - Wang-Gohrke, Shan
AU - Weber, Bernhard H.F.
AU - Weichert, Wilko
AU - Wieland, Kerstin
AU - Wiesmüller, Lisa
AU - Witzel, Isabell
AU - Wöckel, Achim
AU - Woodward, Emma R.
AU - Zachariae, Silke
AU - Zampiga, Valentina
AU - Zeder-Göß, Christine
AU - Investigators, KCon Fab
AU - Lázaro, Conxi
AU - De Nicolo, Arcangela
AU - Radice, Paolo
AU - Engel, Christoph
AU - Schmutzler, Rita K.
AU - Goldgar, David E.
AU - Spurdle, Amanda B.
N1 - Funding Information: kConFab and kConFab Clinical Follow Up Study: National Breast Cancer Foundation (Australia), National Health and Medical Research Council (NHMRC), Queensland Cancer Fund, Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, Cancer Foundation of Western Australia, and Cancer Australia. BCAC and iCOGS: Cancer Research UK (grant numbers C1287/A16563, C1287/A10118, C1287/A10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the European Unions Horizon 2020 Research and Innovation Programme (grant numbers 634935 and 633784 for BRIDGES and B-CAST respectively), the European Communitys Seventh Framework Programme under grant agreement no. 223175 (HEALTHF2–2009-223175) (COGS), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065-01 (DRIVE), and 1U19 CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), and the Canadian Institutes of Health Research CIHR) for the CIHR Team in Familial Risks of Breast Cancer (grant PSR-SIIRI-701). QIMR Berghofer Medical Research Institute: MT Parsons is supported by a grant from Newcastle University, UK E Tudini was supported by a grant from the National Health and Medical Research Council (NHMRC, ID1104808). Publisher Copyright: © 2019 Wiley Periodicals, Inc.
PY - 2019/9/1
Y1 - 2019/9/1
N2 - The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification.
AB - The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification.
KW - BRCA1
KW - BRCA2
KW - classification
KW - clinical
KW - multifactorial
KW - quantitative
KW - uncertain significance
KW - variant
UR - http://www.scopus.com/inward/record.url?scp=85072233740&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072233740&partnerID=8YFLogxK
U2 - 10.1002/humu.23818
DO - 10.1002/humu.23818
M3 - Article
C2 - 31131967
AN - SCOPUS:85072233740
SN - 1059-7794
VL - 40
SP - 1557
EP - 1578
JO - Human Mutation
JF - Human Mutation
IS - 9
ER -