Kisspeptins inhibit human airway smooth muscle proliferation

Niyati A. Borkar, Nilesh Sudhakar Ambhore, Rama Satyanarayana Raju Kalidhindi, Christina M. Pabelick, Y. S. Prakash, Venkatachalem Sathish

Research output: Contribution to journalArticlepeer-review

Abstract

Sex and gender disparity in asthma is recognized and suggests a modulatory role for sex steroids, particularly estrogen. However, there is a dichotomous role for estrogen in airway remodeling, making it unclear whether sex hormones are protective or detrimental in asthma and suggesting a need to explore mechanisms upstream or independent of estrogen. We hypothesize that kisspeptin (Kp)/KISS1R signaling serves this role. Airway smooth muscle (ASM) is a key structural cell type that contributes to remodeling in asthma. We explored the role of Kp/KISS1R in regulating ASM proliferation. We report potentially novel data indicating that Kp and KISS1R are expressed in human airways, especially ASM, with lower expression in ASM from women compared with men and lower in patients with asthma compared with people without asthma. Proliferation studies showed that cleaved forms of Kp, particularly Kp-10, mitigated PDGF-induced ASM proliferation. Pharmacological inhibition and shRNA knockdown of KISS1R increased basal ASM proliferation, which was further amplified by PDGF. The antiproliferative effect of Kp-10 in ASM was mediated by inhibition of MAPK/ERK/Akt pathways, with altered expression of PCNA, C/EBP-α, Ki-67, cyclin D1, and cyclin E leading to cell cycle arrest at G0/G1 phase. Overall, we demonstrate the importance of Kp/KISS1R signaling in regulating ASM proliferation and a potential therapeutic avenue to blunt remodeling in asthma.

Original languageEnglish (US)
Article numbere152762
JournalJCI Insight
Volume7
Issue number10
DOIs
StatePublished - May 23 2022

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Kisspeptins inhibit human airway smooth muscle proliferation'. Together they form a unique fingerprint.

Cite this