Kinetic Analysis of Oligodeoxyribonucleotide-Directed Triple-Helix Formation on DNA

L. James Maher, Peter B. Dervan, Barbara J. Wold

Research output: Contribution to journalArticlepeer-review

177 Scopus citations

Abstract

Pyrimidine oligonucleotides recognize extended purine sequences in the major groove of double-helical DNA by triple-helix formation. The resulting local triple helices are relatively stable and can block DNA recognition by sequence-specific DNA binding proteins such as restriction endonucleases. Association and dissociation kinetics for the oligodeoxyribonucleotide 5′-CTCTTTCCTCTCTTTTTCCCC (bold C’s indicate 5-methylcytosine residues) are now measured with a restriction endonuclease protection assay. When oligonucleotides are present in > 10-fold excess over the DNA target site, the binding reaction kinetics are pseudo first order in oligonucleotide concentration. Under our standard conditions (37 °C, 25 mM Tris-acetate, pH 6.8, 70 mM sodium chloride, 20 mM magnesium chloride, 0.4 mM spermine tetrahydrochloride, 10 mM β-mercaptoethanol, 0.1 mg/mL bovine serum albumin) the value of the observed pseudo-first-order association rate constant, k2obs, is 1.8 × 103 ± 1.9 × 102 L·(mol of oligomer)−1·s−1. Measurement of the dissociation rate constant yields an equilibrium dissociation constant of approximately 10 nM. Increasing sodium ion concentration slightly decreased the association rate, substantially increased the dissociation rate, and thereby reduced the equilibrium binding constant. This effect was reversible by increasing multivalent cation concentration, confirming the significant role of multivalent cations in oligonucleotide-directed triple-helix formation under these conditions. Finally, a small reduction in association rate, a large increase in dissociation rate, and a resulting reduction in the equilibrium binding constant were observed upon increasing the pH between 6.8 and 7.2.

Original languageEnglish (US)
Pages (from-to)8820-8826
Number of pages7
JournalBiochemistry
Volume29
Issue number37
DOIs
StatePublished - Sep 1 1990

ASJC Scopus subject areas

  • Biochemistry

Fingerprint Dive into the research topics of 'Kinetic Analysis of Oligodeoxyribonucleotide-Directed Triple-Helix Formation on DNA'. Together they form a unique fingerprint.

Cite this