KDM4 orchestrates epigenomic remodeling of senescent cells and potentiates the senescence-associated secretory phenotype

Boyi Zhang, Qilai Long, Shanshan Wu, Qixia Xu, Shuling Song, Liu Han, Min Qian, Xiaohui Ren, Hanxin Liu, Jing Jiang, Jianming Guo, Xiaoling Zhang, Xing Chang, Qiang Fu, Eric W.F. Lam, Judith Campisi, James L. Kirkland, Yu Sun

Research output: Contribution to journalArticlepeer-review

Abstract

Cellular senescence restrains the expansion of neoplastic cells through several layers of regulation. We report that the histone H3-specific demethylase KDM4 is expressed as human stromal cells undergo senescence. In clinical oncology, upregulated KDM4 and diminished H3K9/H3K36 methylation correlate with poorer survival of patients with prostate cancer after chemotherapy. Global chromatin accessibility mapping via assay for transposase-accessible chromatin with high-throughput sequencing, and expression profiling through RNA sequencing, reveal global changes of chromatin openness and spatiotemporal reprogramming of the transcriptomic landscape, which underlie the senescence-associated secretory phenotype (SASP). Selective targeting of KDM4 dampens the SASP of senescent stromal cells, promotes cancer cell apoptosis in the treatment-damaged tumor microenvironment and prolongs survival of experimental animals. Our study supports dynamic changes of H3K9/H3K36 methylation during senescence, identifies an unusually permissive chromatin state and unmasks KDM4 as a key SASP modulator. KDM4 targeting presents a new therapeutic avenue to manipulate cellular senescence and limit its contribution to age-related pathologies, including cancer.

Original languageEnglish (US)
Pages (from-to)454-472
Number of pages19
JournalNature Aging
Volume1
Issue number5
DOIs
StatePublished - May 2021

ASJC Scopus subject areas

  • Aging
  • Geriatrics and Gerontology
  • Neuroscience (miscellaneous)

Fingerprint

Dive into the research topics of 'KDM4 orchestrates epigenomic remodeling of senescent cells and potentiates the senescence-associated secretory phenotype'. Together they form a unique fingerprint.

Cite this