Joint intensity-and-point based registration of free-hand B-mode ultrasound and MRI of the carotid artery

Diego D.B. Carvalho, Stefan Klein, Zeynettin Akkus, Anouk C. Van Dijk, Hui Tang, Mariana Selwaness, Arend F.L. Schinkel, Johan G. Bosch, Aad Van Der Lugt, Wiro J. Niessen

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Purpose: To introduce a semiautomatic algorithm to perform the registration of free-hand B-Mode ultrasound (US) and magnetic resonance imaging (MRI) of the carotid artery. Methods: The authors' approach combines geometrical features and intensity information. The only user interaction consists of placing three seed points in US and MRI. First, the lumen centerlines are used as landmarks for point based registration. Subsequently, in a joint optimization the distance between centerlines and the dissimilarity of the image intensities is minimized. Evaluation is performed in left and right carotids from six healthy volunteers and five patients with atherosclerosis. For the validation, the authors measure the Dice similarity coefficient (DSC) and the mean surface distance (MSD) between carotid lumen segmentations in US and MRI after registration. The effect of several design parameters on the registration accuracy is investigated by an exhaustive search on a training set of five volunteers and three patients. The optimum configuration is validated on the remaining images of one volunteer and two patients. Results: On the training set, the authors achieve an average DSC of 0.74 and a MSD of 0.66 mm on volunteer data. For the patient data, the authors obtain a DSC of 0.77 and a MSD of 0.69 mm. In the independent set composed of patient and volunteer data, the DSC is 0.69 and the MSD is 0.87 mm. The experiments with different design parameters show that nonrigid registration outperforms rigid registration, and that the combination of intensity and point information is superior to approaches that use intensity or points only. Conclusions: The proposed method achieves an accurate registration of US and MRI, and may thus enable multimodal analysis of the carotid plaque.

Original languageEnglish (US)
Article number052904
JournalMedical physics
Volume41
Issue number5
DOIs
StatePublished - May 2014

Keywords

  • atherosclerosis
  • carotid artery
  • image registration
  • magnetic resonance imaging
  • ultrasound

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Joint intensity-and-point based registration of free-hand B-mode ultrasound and MRI of the carotid artery'. Together they form a unique fingerprint.

Cite this