TY - JOUR
T1 - JAK2 inhibitors in the treatment of myeloproliferative neoplasms
AU - Tibes, Raoul
AU - Bogenberger, James M.
AU - Geyer, Holly L.
AU - Mesa, Ruben A.
N1 - Funding Information:
RA Mesa has received clinical trial funding from Incyte, NS Pharma, YM Biosciences, Genentech, Lilli, Gilead, Infinity. None of the other authors have any competing interests to declare and no funding was received in preparation of this manuscript.
PY - 2012/12
Y1 - 2012/12
N2 - Introduction: Dysregulation of JAK-STAT signaling is a pathogenetic hallmark of myeloproliferative neoplasms (MPNs) arising from several distinct molecular aberrations, including mutations in JAK2, the thrombopoietin receptor (MPL), mutations in negative regulators of JAK-STAT signaling, such as lymphocyte-specific adapter protein (SH2B3), and epigenetic dysregulation as seen with Suppressor of Cytokine Signaling (SOCS) proteins. In addition, growth factor/cytokine stimulatory events activate JAK-STAT signaling independent of mutations. Areas covered: The various mutations and molecular events activating JAK-STAT signaling in MPNs are reviewed. Detailed inhibitory kinase profiles of the currently developed JAK inhibitors are presented. Clinical trial results for currently developed JAK targeting agents are comprehensively summarized. The limitations of JAK-STAT targeting in MPNs, as well as potential rational combination therapies with JAK2 inhibitors, are discussed. Expert opinion: Aberrant JAK-STAT signaling is an underlying theme in the pathogenesis of MPNs. While JAK2 inhibitors are active in JAK2V617F and wild-type JAK2 MPNs, JAK2V617F mutation-specific or JAK2-selective inhibitors may possess unique clinical attributes. Complimentary targeting of parallel pathways operating in MPNs may offer novel therapeutic approaches in combination with JAK inhibition. Understanding the intricacies of JAK-STAT pathway activation, including growth factor/cytokine-driven signaling, will open new avenues for therapeutic intervention at known and novel molecular vulnerabilities of MPNs.
AB - Introduction: Dysregulation of JAK-STAT signaling is a pathogenetic hallmark of myeloproliferative neoplasms (MPNs) arising from several distinct molecular aberrations, including mutations in JAK2, the thrombopoietin receptor (MPL), mutations in negative regulators of JAK-STAT signaling, such as lymphocyte-specific adapter protein (SH2B3), and epigenetic dysregulation as seen with Suppressor of Cytokine Signaling (SOCS) proteins. In addition, growth factor/cytokine stimulatory events activate JAK-STAT signaling independent of mutations. Areas covered: The various mutations and molecular events activating JAK-STAT signaling in MPNs are reviewed. Detailed inhibitory kinase profiles of the currently developed JAK inhibitors are presented. Clinical trial results for currently developed JAK targeting agents are comprehensively summarized. The limitations of JAK-STAT targeting in MPNs, as well as potential rational combination therapies with JAK2 inhibitors, are discussed. Expert opinion: Aberrant JAK-STAT signaling is an underlying theme in the pathogenesis of MPNs. While JAK2 inhibitors are active in JAK2V617F and wild-type JAK2 MPNs, JAK2V617F mutation-specific or JAK2-selective inhibitors may possess unique clinical attributes. Complimentary targeting of parallel pathways operating in MPNs may offer novel therapeutic approaches in combination with JAK inhibition. Understanding the intricacies of JAK-STAT pathway activation, including growth factor/cytokine-driven signaling, will open new avenues for therapeutic intervention at known and novel molecular vulnerabilities of MPNs.
KW - Acute leukemia
KW - Essential thrombocythemia
KW - JAK-STAT pathway
KW - JAK2 inhibitors
KW - Myeloproliferative neoplasms
KW - Polycythemia vera, myelofibrosis
KW - Primary myelofibrosis
UR - http://www.scopus.com/inward/record.url?scp=84868711370&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84868711370&partnerID=8YFLogxK
U2 - 10.1517/13543784.2012.721352
DO - 10.1517/13543784.2012.721352
M3 - Review article
C2 - 22991927
AN - SCOPUS:84868711370
VL - 21
SP - 1755
EP - 1774
JO - Expert Opinion on Investigational Drugs
JF - Expert Opinion on Investigational Drugs
SN - 1354-3784
IS - 12
ER -