Irritable bowel syndrome patients have SCN5A channelopathies that lead to decreased Na v 1.5 current and mechanosensitivity

Peter R. Strege, Amelia Mazzone, Cheryl E. Bernard, Leila Neshatian, Simon J. Gibbons, Yuri A. Saito, David J. Tester, Melissa L. Calvert, Emeran A. Mayer, Lin Chang, Michael J. Ackerman, Arthur Beyder, Gianrico Farrugia

Research output: Contribution to journalArticle

11 Scopus citations

Abstract

The SCN5A-encoded voltage-gated mechanosensitive Na + channel Na V 1.5 is expressed in human gastrointestinal smooth muscle cells and interstitial cells of Cajal. Na V 1.5 contributes to smooth muscle electrical slow waves and mechanical sensitivity. In predominantly Caucasian irritable bowel syndrome (IBS) patient cohorts, 2-3% of patients have SCN5A missense mutations that alter Na V 1.5 function and may contribute to IBS pathophysiology. In this study we examined a racially and ethnically diverse cohort of IBS patients for SCN5A missense mutations, compared them with IBS-negative controls, and determined the resulting Na V 1.5 voltage-dependent and mechanosensitive properties. All SCN5A exons were sequenced from somatic DNA of 252 Rome III IBS patients with diverse ethnic and racial backgrounds. Missense mutations were introduced into wild-type SCN5A by site-directed mutagenesis and cotransfected with green fluorescent protein into HEK-293 cells. Na V 1.5 voltage-dependent and mechanosensitive functions were studied by whole cell electrophysiology with and without shear force. Five of 252 (2.0%) IBS patients had six rare SCN5A mutations that were absent in 377 IBS-negative controls. Six of six (100%) IBS-associated Na V 1.5 mutations had voltage-dependent gating abnormalities [current density reduction (R225W, R433C, R986Q, and F1293S) and altered voltage dependence (R225W, R433C, R986Q, G1037V, and F1293S)], and at least one kinetic parameter was altered in all mutations. Four of six (67%) IBS-associated SCN5A mutations (R225W, R433C, R986Q, and F1293S) resulted in altered Na V 1.5 mechanosensitivity. In this racially and ethnically diverse cohort of IBS patients, we show that 2% of IBS patients harbor SCN5A mutations that are absent in IBS-negative controls and result in NaV1.5 channels with abnormal voltage-dependent and mechanosensitive function. NEW & NOTEWORTHY The voltage-gated Na + channel NaV1.5 contributes to smooth muscle physiology and electrical slow waves. In a racially and ethnically mixed irritable bowel syndrome cohort, 2% had mutations in the NaV1.5 gene SCN5A. These mutations were absent in irritable bowel syndrome-negative controls. Most mutant NaV1.5 channels were loss of function in voltage dependence or mechanosensitivity.

Original languageEnglish (US)
Pages (from-to)G494-G503
JournalAmerican Journal of Physiology - Gastrointestinal and Liver Physiology
Volume314
Issue number4
DOIs
StatePublished - Apr 2018

Keywords

  • Ion channels
  • Molecular mechanisms
  • Mutations
  • Smooth muscle

ASJC Scopus subject areas

  • Physiology
  • Hepatology
  • Gastroenterology
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Irritable bowel syndrome patients have SCN5A channelopathies that lead to decreased Na <sub>v</sub> 1.5 current and mechanosensitivity'. Together they form a unique fingerprint.

  • Cite this