TY - JOUR
T1 - Irritable bowel syndrome-diarrhea
T2 - Characterization of genotype by exome sequencing, and phenotypes of bile acid synthesis and colonic transit
AU - Camilleri, Michael
AU - Klee, Eric W.
AU - Shin, Andrea
AU - Carlson, Paula
AU - Li, Ying
AU - Grover, Madhusudan
AU - Zinsmeister, Alan R.
PY - 2014/1/1
Y1 - 2014/1/1
N2 - The study objectives were: To mine the complete exome to identify putative rare single nucleotide variants (SNVs) associated with irritable bowel syndrome (IBS)-diarrhea (IBS-D) phenotype, to assess genes that regulate bile acids in IBS-D, and to explore univariate associations of SNVs with symptom phenotype and quantitative traits in an independent IBS cohort. Using principal components analysis, we identified two groups of IBS-D (n = 16) with increased fecal bile acids: Rapid colonic transit or high bile acids synthesis. DNA was sequenced in depth, analyzing SNVs in bile acid genes (ASBT, FXR, OSTα/β, FGF19, FGFR4, KLB, SHP, CYP7A1, LRH-1, and FABP6). Exome findings were compared with those of 50 similar ethnicity controls. We assessed univariate associations of each SNV with quantitative traits and a principal components analysis and associations between SNVs in KLB and FGFR4 and symptom phenotype in 405 IBS, 228 controls and colonic transit in 70 IBS-D, 71 IBS-constipation. Mining the complete exome did not reveal significant associations with IBS-D over controls. There were 54 SNVs in 10 of 11 bile acid-regulating genes, with no SNVs in FGF19; 15 nonsynonymous SNVs were identified in similar proportions of IBS-D and controls. Variations in KLB (rs1015450, downstream) and FGFR4 [rs434434 (intronic), rs1966265, and rs351855 (nonsynonymous)] were associated with colonic transit (rs1966265; P = 0.043), fecal bile acids (rs1015450; P = 0.064), and principal components analysis groups (all 3 FGFR4 SNVs; P < 0.05). In the 633-person cohort, FGFR4 rs434434 was associated with symptom phenotype (P = 0.027) and rs1966265 with 24-h colonic transit (P = 0.066). Thus exome sequencing identified additional variants in KLB and FGFR4 associated with bile acids or colonic transit in IBS-D.
AB - The study objectives were: To mine the complete exome to identify putative rare single nucleotide variants (SNVs) associated with irritable bowel syndrome (IBS)-diarrhea (IBS-D) phenotype, to assess genes that regulate bile acids in IBS-D, and to explore univariate associations of SNVs with symptom phenotype and quantitative traits in an independent IBS cohort. Using principal components analysis, we identified two groups of IBS-D (n = 16) with increased fecal bile acids: Rapid colonic transit or high bile acids synthesis. DNA was sequenced in depth, analyzing SNVs in bile acid genes (ASBT, FXR, OSTα/β, FGF19, FGFR4, KLB, SHP, CYP7A1, LRH-1, and FABP6). Exome findings were compared with those of 50 similar ethnicity controls. We assessed univariate associations of each SNV with quantitative traits and a principal components analysis and associations between SNVs in KLB and FGFR4 and symptom phenotype in 405 IBS, 228 controls and colonic transit in 70 IBS-D, 71 IBS-constipation. Mining the complete exome did not reveal significant associations with IBS-D over controls. There were 54 SNVs in 10 of 11 bile acid-regulating genes, with no SNVs in FGF19; 15 nonsynonymous SNVs were identified in similar proportions of IBS-D and controls. Variations in KLB (rs1015450, downstream) and FGFR4 [rs434434 (intronic), rs1966265, and rs351855 (nonsynonymous)] were associated with colonic transit (rs1966265; P = 0.043), fecal bile acids (rs1015450; P = 0.064), and principal components analysis groups (all 3 FGFR4 SNVs; P < 0.05). In the 633-person cohort, FGFR4 rs434434 was associated with symptom phenotype (P = 0.027) and rs1966265 with 24-h colonic transit (P = 0.066). Thus exome sequencing identified additional variants in KLB and FGFR4 associated with bile acids or colonic transit in IBS-D.
KW - Klotho B
KW - Risk factor
KW - Susceptibility
KW - Symptom
UR - http://www.scopus.com/inward/record.url?scp=84891547487&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84891547487&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.00294.2013
DO - 10.1152/ajpgi.00294.2013
M3 - Article
C2 - 24200957
AN - SCOPUS:84891547487
SN - 1931-857X
VL - 306
SP - G13-G26
JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
IS - 1
ER -