Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores

Kimberly J. Kotz, Mark A Mc Niven

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

Teleost pigment cells (erythrophores and melanophores) are useful models for studying the regulation of rapid, microtubule-dependent organelle transport. Previous studies suggest that melanophores regulate the direction of pigment movements via changes in intracellular cAMP (Rozdzial and Haimo, 1986a; Sammak et al., 1992), whereas erythrophores may use calcium- (Ca2+- ) based regulation (Luby-Phelps and Porter, 1982; McNiven and Ward, 1988). Despite these observations, there have been no direct measurements in intact erythrophores or any cell type correlating changes of intracellular free Ca2+ ([Ca2+](i)) with organelle movements. Here we demonstrate that extracellular Ca2+ is necessary and that a Ca2+ influx via microinjection is sufficient to induce pigment aggregation in erythrophores, but not melanophores of squirrel fish. Using the Ca2+-sensitive indicator, Fura-2, we demonstrate that [Ca2+](i) rises dramatically concomitant with aggregation of pigment granules in erythrophores, but not melanophores. In addition, we find that an erythrophore stimulated to aggregate pigment will immediately transmit a rise in [Ca2+](i) to neighboring cells, suggesting that these cells are electrically coupled. Surprisingly, we find that a fall in [Ca2+](i) is not sufficient to induce pigment dispersion in erythrophores, contrary to the findings obtained with the ionophore and lysed-cell models (Luby-Phelps and Porter, 1982; McNiven and Ward, 1988). We find that a rise in intracellular cAMP ([cAMP](i)) induces pigment dispersion, and that this dispersive stimulus can be overridden by an aggregation stimulus, suggesting that both high [cAMP](i) and low [Ca2+](i) are necessary to produce pigment dispersion in erythrophores.

Original languageEnglish (US)
Pages (from-to)463-474
Number of pages12
JournalJournal of Cell Biology
Volume124
Issue number4
StatePublished - Feb 1994

Fingerprint

Melanophores
Calcium
Organelles
Sciuridae
Fura-2
Ionophores
Microinjections
Microtubules
Fishes

ASJC Scopus subject areas

  • Cell Biology

Cite this

Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores. / Kotz, Kimberly J.; Mc Niven, Mark A.

In: Journal of Cell Biology, Vol. 124, No. 4, 02.1994, p. 463-474.

Research output: Contribution to journalArticle

@article{3135b081293c46a2a18f05a9d81ad045,
title = "Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores",
abstract = "Teleost pigment cells (erythrophores and melanophores) are useful models for studying the regulation of rapid, microtubule-dependent organelle transport. Previous studies suggest that melanophores regulate the direction of pigment movements via changes in intracellular cAMP (Rozdzial and Haimo, 1986a; Sammak et al., 1992), whereas erythrophores may use calcium- (Ca2+- ) based regulation (Luby-Phelps and Porter, 1982; McNiven and Ward, 1988). Despite these observations, there have been no direct measurements in intact erythrophores or any cell type correlating changes of intracellular free Ca2+ ([Ca2+](i)) with organelle movements. Here we demonstrate that extracellular Ca2+ is necessary and that a Ca2+ influx via microinjection is sufficient to induce pigment aggregation in erythrophores, but not melanophores of squirrel fish. Using the Ca2+-sensitive indicator, Fura-2, we demonstrate that [Ca2+](i) rises dramatically concomitant with aggregation of pigment granules in erythrophores, but not melanophores. In addition, we find that an erythrophore stimulated to aggregate pigment will immediately transmit a rise in [Ca2+](i) to neighboring cells, suggesting that these cells are electrically coupled. Surprisingly, we find that a fall in [Ca2+](i) is not sufficient to induce pigment dispersion in erythrophores, contrary to the findings obtained with the ionophore and lysed-cell models (Luby-Phelps and Porter, 1982; McNiven and Ward, 1988). We find that a rise in intracellular cAMP ([cAMP](i)) induces pigment dispersion, and that this dispersive stimulus can be overridden by an aggregation stimulus, suggesting that both high [cAMP](i) and low [Ca2+](i) are necessary to produce pigment dispersion in erythrophores.",
author = "Kotz, {Kimberly J.} and {Mc Niven}, {Mark A}",
year = "1994",
month = "2",
language = "English (US)",
volume = "124",
pages = "463--474",
journal = "Journal of Cell Biology",
issn = "0021-9525",
publisher = "Rockefeller University Press",
number = "4",

}

TY - JOUR

T1 - Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores

AU - Kotz, Kimberly J.

AU - Mc Niven, Mark A

PY - 1994/2

Y1 - 1994/2

N2 - Teleost pigment cells (erythrophores and melanophores) are useful models for studying the regulation of rapid, microtubule-dependent organelle transport. Previous studies suggest that melanophores regulate the direction of pigment movements via changes in intracellular cAMP (Rozdzial and Haimo, 1986a; Sammak et al., 1992), whereas erythrophores may use calcium- (Ca2+- ) based regulation (Luby-Phelps and Porter, 1982; McNiven and Ward, 1988). Despite these observations, there have been no direct measurements in intact erythrophores or any cell type correlating changes of intracellular free Ca2+ ([Ca2+](i)) with organelle movements. Here we demonstrate that extracellular Ca2+ is necessary and that a Ca2+ influx via microinjection is sufficient to induce pigment aggregation in erythrophores, but not melanophores of squirrel fish. Using the Ca2+-sensitive indicator, Fura-2, we demonstrate that [Ca2+](i) rises dramatically concomitant with aggregation of pigment granules in erythrophores, but not melanophores. In addition, we find that an erythrophore stimulated to aggregate pigment will immediately transmit a rise in [Ca2+](i) to neighboring cells, suggesting that these cells are electrically coupled. Surprisingly, we find that a fall in [Ca2+](i) is not sufficient to induce pigment dispersion in erythrophores, contrary to the findings obtained with the ionophore and lysed-cell models (Luby-Phelps and Porter, 1982; McNiven and Ward, 1988). We find that a rise in intracellular cAMP ([cAMP](i)) induces pigment dispersion, and that this dispersive stimulus can be overridden by an aggregation stimulus, suggesting that both high [cAMP](i) and low [Ca2+](i) are necessary to produce pigment dispersion in erythrophores.

AB - Teleost pigment cells (erythrophores and melanophores) are useful models for studying the regulation of rapid, microtubule-dependent organelle transport. Previous studies suggest that melanophores regulate the direction of pigment movements via changes in intracellular cAMP (Rozdzial and Haimo, 1986a; Sammak et al., 1992), whereas erythrophores may use calcium- (Ca2+- ) based regulation (Luby-Phelps and Porter, 1982; McNiven and Ward, 1988). Despite these observations, there have been no direct measurements in intact erythrophores or any cell type correlating changes of intracellular free Ca2+ ([Ca2+](i)) with organelle movements. Here we demonstrate that extracellular Ca2+ is necessary and that a Ca2+ influx via microinjection is sufficient to induce pigment aggregation in erythrophores, but not melanophores of squirrel fish. Using the Ca2+-sensitive indicator, Fura-2, we demonstrate that [Ca2+](i) rises dramatically concomitant with aggregation of pigment granules in erythrophores, but not melanophores. In addition, we find that an erythrophore stimulated to aggregate pigment will immediately transmit a rise in [Ca2+](i) to neighboring cells, suggesting that these cells are electrically coupled. Surprisingly, we find that a fall in [Ca2+](i) is not sufficient to induce pigment dispersion in erythrophores, contrary to the findings obtained with the ionophore and lysed-cell models (Luby-Phelps and Porter, 1982; McNiven and Ward, 1988). We find that a rise in intracellular cAMP ([cAMP](i)) induces pigment dispersion, and that this dispersive stimulus can be overridden by an aggregation stimulus, suggesting that both high [cAMP](i) and low [Ca2+](i) are necessary to produce pigment dispersion in erythrophores.

UR - http://www.scopus.com/inward/record.url?scp=0028144568&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028144568&partnerID=8YFLogxK

M3 - Article

C2 - 8106546

AN - SCOPUS:0028144568

VL - 124

SP - 463

EP - 474

JO - Journal of Cell Biology

JF - Journal of Cell Biology

SN - 0021-9525

IS - 4

ER -