Intensive direct cavernous sinus sampling identifies high-frequency, nearly random patterns of FSH secretion in ovariectomized ewes: Combined appraisal by RIA and bioassay

Iain Clarke, Lloyd Moore, Johannes Veldhuis

Research output: Contribution to journalArticle

26 Scopus citations


Analyses of FSH secretion suggest pulsatile, nonpulsatile, or compositely pulsatile and nonpulsatile release modes. This may reflect the reduced signal-to-noise ratio inherent in FSH pulse estimation procedures and/or immunological-biological assay inconsistencies. To address these issues, we sampled cavernous sinus and jugular venous blood concomitantly from ovariectomized sheep at either 5-min or 1-min intervals. Samples from the former were assayed by RIA, and those from the latter by RIA and bioassay. Waveform-independent peak detection revealed FSH pulses occurring at high frequency. Pulsatile FSH secretion accounted for 28% of total secretion. Approximate entropy analysis showed that FSH secretion was nearly random. There was synchronous release of LH and FSH, but most FSH secretion was not associated with LH release; 13% of discrete FSH and LH pulses were concordant. We infer that FSH secretion exhibits pulsatile and basal/nonpulsatile features, with high-entropy features. Linear and non-linear statistical measures revealed joint sample-by-sample synchrony of FSH and LH release, indicating pattern coordination despite sparse synchrony of pulses. We postulate that pattern synchrony of FSH and LH release is effected at the level of the gonadotrope. Concordant FSH and LH pulses probably result from pulsatile GnRH input, but other mechanisms could account for independent FSH pulses.

Original languageEnglish (US)
Pages (from-to)117-129
Number of pages13
Issue number1
StatePublished - Jan 1 2002


ASJC Scopus subject areas

  • Endocrinology

Cite this