INN: Inflated Neural Networks for IPMN Diagnosis

Rodney LaLonde, Irene Tanner, Katerina Nikiforaki, Georgios Z. Papadakis, Pujan Kandel, Candice W. Bolan, Michael B. Wallace, Ulas Bagci

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Intraductal papillary mucinous neoplasm (IPMN) is a precursor to pancreatic ductal adenocarcinoma. While over half of patients are diagnosed with pancreatic cancer at a distant stage, patients who are diagnosed early enjoy a much higher 5-year survival rate of 34% compared to 3% in the former; hence, early diagnosis is key. Unique challenges in the medical imaging domain such as extremely limited annotated data sets and typically large 3D volumetric data have made it difficult for deep learning to secure a strong foothold. In this work, we construct two novel “inflated” deep network architectures, InceptINN and DenseINN, for the task of diagnosing IPMN from multisequence (T1 and T2) MRI. These networks inflate their 2D layers to 3D and bootstrap weights from their 2D counterparts (Inceptionv3 and DenseNet121 respectively) trained on ImageNet to the new 3D kernels. We also extend the inflation process by further expanding the pre-trained kernels to handle any number of input modalities and different fusion strategies. This is one of the first studies to train an end-to-end deep network on multisequence MRI for IPMN diagnosis, and shows that our proposed novel inflated network architectures are able to handle the extremely limited training data (139 MRI scans), while providing an absolute improvement of 8.76% in accuracy for diagnosing IPMN over the current state-of-the-art. Code is publicly available at https://github.com/lalonderodney/INN-Inflated-Neural-Nets.

Original languageEnglish (US)
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
EditorsDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
PublisherSpringer
Pages101-109
Number of pages9
ISBN (Print)9783030322533
DOIs
StatePublished - Jan 1 2019
Event22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: Oct 13 2019Oct 17 2019

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11768 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
CountryChina
CityShenzhen
Period10/13/1910/17/19

Keywords

  • CAD
  • Inflated networks
  • IPMN
  • MRI
  • Pancreatic cancer

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Dive into the research topics of 'INN: Inflated Neural Networks for IPMN Diagnosis'. Together they form a unique fingerprint.

  • Cite this

    LaLonde, R., Tanner, I., Nikiforaki, K., Papadakis, G. Z., Kandel, P., Bolan, C. W., Wallace, M. B., & Bagci, U. (2019). INN: Inflated Neural Networks for IPMN Diagnosis. In D. Shen, P-T. Yap, T. Liu, T. M. Peters, A. Khan, L. H. Staib, C. Essert, & S. Zhou (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings (pp. 101-109). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11768 LNCS). Springer. https://doi.org/10.1007/978-3-030-32254-0_12