Increased hypoxia and reduced renal tubular response to furosemide detected by BOLD magnetic resonance imaging in swine renovascular hypertension

Sabas I. Gomez, Lizette Warner, John A. Haas, Rodney J. Bolterman, Stephen C Textor, Lilach O Lerman, Juan Carlos Romero

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

Oxygen consumption beyond the proximal tubule is mainly determined by active solute reabsorption, especially in the thick ascending limb of the Loop of Henle. Furosemide-induced suppression of oxygen consumption (FSOC) involves inhibition of sodium transport in this segment, which is normally accompanied by a marked decrease in the intrarenal deoxyhemoglobin detectable by blood oxygen level-dependent (BOLD)-magnetic resonance imaging (MRI). This study tested the hypothesis that the magnitude of BOLD-MRI signal change after furosemide is related to impaired renal function in renovascular hypertension. In 16 pigs with unilateral renal artery stenosis, renal hemodynamics, function, and tubular function (FSOC and fluid concentration capacity) were evaluated in both kidneys using MR and multidetector computerized tomography (MDCT) imaging. Animals with adequate FSOC (23.6 ± 2.2%, P > 0.05 vs. baseline) exhibited a mean arterial pressure (MAP) of 113 ± 7 mmHg, and relatively preserved glomerular filtration rate (GFR) of 60 ± 4.5 ml/min, comparable to their contralateral kidney (66 ± 4 ml/min, P > 0.05). In contrast, animals with low FSOC (3.1 ± 2.1%, P = NS vs. baseline) had MAP of 124 ± 9 mmHg and GFR (22 ± 6 ml/min) significantly lower than the contralateral kidneys (66 ± 4 ml/min, P < 0.05). The group with preserved GFR and FSOC showed an increase in intratubular fluid concentration as assessed by MDCT that was greater than that observed in the low GFR group, suggesting better preservation of tubular function in the former group. These results suggest that changes in BOLD-MRI after furosemide can differentiate between underperfused kidneys with preserved tubular function and those with tubular dysfunction. This approach may allow more detailed physiologic evaluation of poststenotic kidneys in renovascular hypertension than previously possible.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Renal Physiology
Volume297
Issue number4
DOIs
StatePublished - Oct 2009

Fingerprint

Renovascular Hypertension
Furosemide
Oxygen Consumption
Swine
Magnetic Resonance Imaging
Oxygen
Kidney
Glomerular Filtration Rate
Arterial Pressure
Tomography
Loop of Henle
Renal Artery Obstruction
Hypoxia
Hemodynamics
Sodium

Keywords

  • Oxygenation
  • Renal artery stenosis

ASJC Scopus subject areas

  • Physiology
  • Urology

Cite this

Increased hypoxia and reduced renal tubular response to furosemide detected by BOLD magnetic resonance imaging in swine renovascular hypertension. / Gomez, Sabas I.; Warner, Lizette; Haas, John A.; Bolterman, Rodney J.; Textor, Stephen C; Lerman, Lilach O; Romero, Juan Carlos.

In: American Journal of Physiology - Renal Physiology, Vol. 297, No. 4, 10.2009.

Research output: Contribution to journalArticle

@article{38f9e151a31c467eaf0a3f5e734c68c9,
title = "Increased hypoxia and reduced renal tubular response to furosemide detected by BOLD magnetic resonance imaging in swine renovascular hypertension",
abstract = "Oxygen consumption beyond the proximal tubule is mainly determined by active solute reabsorption, especially in the thick ascending limb of the Loop of Henle. Furosemide-induced suppression of oxygen consumption (FSOC) involves inhibition of sodium transport in this segment, which is normally accompanied by a marked decrease in the intrarenal deoxyhemoglobin detectable by blood oxygen level-dependent (BOLD)-magnetic resonance imaging (MRI). This study tested the hypothesis that the magnitude of BOLD-MRI signal change after furosemide is related to impaired renal function in renovascular hypertension. In 16 pigs with unilateral renal artery stenosis, renal hemodynamics, function, and tubular function (FSOC and fluid concentration capacity) were evaluated in both kidneys using MR and multidetector computerized tomography (MDCT) imaging. Animals with adequate FSOC (23.6 ± 2.2{\%}, P > 0.05 vs. baseline) exhibited a mean arterial pressure (MAP) of 113 ± 7 mmHg, and relatively preserved glomerular filtration rate (GFR) of 60 ± 4.5 ml/min, comparable to their contralateral kidney (66 ± 4 ml/min, P > 0.05). In contrast, animals with low FSOC (3.1 ± 2.1{\%}, P = NS vs. baseline) had MAP of 124 ± 9 mmHg and GFR (22 ± 6 ml/min) significantly lower than the contralateral kidneys (66 ± 4 ml/min, P < 0.05). The group with preserved GFR and FSOC showed an increase in intratubular fluid concentration as assessed by MDCT that was greater than that observed in the low GFR group, suggesting better preservation of tubular function in the former group. These results suggest that changes in BOLD-MRI after furosemide can differentiate between underperfused kidneys with preserved tubular function and those with tubular dysfunction. This approach may allow more detailed physiologic evaluation of poststenotic kidneys in renovascular hypertension than previously possible.",
keywords = "Oxygenation, Renal artery stenosis",
author = "Gomez, {Sabas I.} and Lizette Warner and Haas, {John A.} and Bolterman, {Rodney J.} and Textor, {Stephen C} and Lerman, {Lilach O} and Romero, {Juan Carlos}",
year = "2009",
month = "10",
doi = "10.1152/ajprenal.90757.2008",
language = "English (US)",
volume = "297",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "4",

}

TY - JOUR

T1 - Increased hypoxia and reduced renal tubular response to furosemide detected by BOLD magnetic resonance imaging in swine renovascular hypertension

AU - Gomez, Sabas I.

AU - Warner, Lizette

AU - Haas, John A.

AU - Bolterman, Rodney J.

AU - Textor, Stephen C

AU - Lerman, Lilach O

AU - Romero, Juan Carlos

PY - 2009/10

Y1 - 2009/10

N2 - Oxygen consumption beyond the proximal tubule is mainly determined by active solute reabsorption, especially in the thick ascending limb of the Loop of Henle. Furosemide-induced suppression of oxygen consumption (FSOC) involves inhibition of sodium transport in this segment, which is normally accompanied by a marked decrease in the intrarenal deoxyhemoglobin detectable by blood oxygen level-dependent (BOLD)-magnetic resonance imaging (MRI). This study tested the hypothesis that the magnitude of BOLD-MRI signal change after furosemide is related to impaired renal function in renovascular hypertension. In 16 pigs with unilateral renal artery stenosis, renal hemodynamics, function, and tubular function (FSOC and fluid concentration capacity) were evaluated in both kidneys using MR and multidetector computerized tomography (MDCT) imaging. Animals with adequate FSOC (23.6 ± 2.2%, P > 0.05 vs. baseline) exhibited a mean arterial pressure (MAP) of 113 ± 7 mmHg, and relatively preserved glomerular filtration rate (GFR) of 60 ± 4.5 ml/min, comparable to their contralateral kidney (66 ± 4 ml/min, P > 0.05). In contrast, animals with low FSOC (3.1 ± 2.1%, P = NS vs. baseline) had MAP of 124 ± 9 mmHg and GFR (22 ± 6 ml/min) significantly lower than the contralateral kidneys (66 ± 4 ml/min, P < 0.05). The group with preserved GFR and FSOC showed an increase in intratubular fluid concentration as assessed by MDCT that was greater than that observed in the low GFR group, suggesting better preservation of tubular function in the former group. These results suggest that changes in BOLD-MRI after furosemide can differentiate between underperfused kidneys with preserved tubular function and those with tubular dysfunction. This approach may allow more detailed physiologic evaluation of poststenotic kidneys in renovascular hypertension than previously possible.

AB - Oxygen consumption beyond the proximal tubule is mainly determined by active solute reabsorption, especially in the thick ascending limb of the Loop of Henle. Furosemide-induced suppression of oxygen consumption (FSOC) involves inhibition of sodium transport in this segment, which is normally accompanied by a marked decrease in the intrarenal deoxyhemoglobin detectable by blood oxygen level-dependent (BOLD)-magnetic resonance imaging (MRI). This study tested the hypothesis that the magnitude of BOLD-MRI signal change after furosemide is related to impaired renal function in renovascular hypertension. In 16 pigs with unilateral renal artery stenosis, renal hemodynamics, function, and tubular function (FSOC and fluid concentration capacity) were evaluated in both kidneys using MR and multidetector computerized tomography (MDCT) imaging. Animals with adequate FSOC (23.6 ± 2.2%, P > 0.05 vs. baseline) exhibited a mean arterial pressure (MAP) of 113 ± 7 mmHg, and relatively preserved glomerular filtration rate (GFR) of 60 ± 4.5 ml/min, comparable to their contralateral kidney (66 ± 4 ml/min, P > 0.05). In contrast, animals with low FSOC (3.1 ± 2.1%, P = NS vs. baseline) had MAP of 124 ± 9 mmHg and GFR (22 ± 6 ml/min) significantly lower than the contralateral kidneys (66 ± 4 ml/min, P < 0.05). The group with preserved GFR and FSOC showed an increase in intratubular fluid concentration as assessed by MDCT that was greater than that observed in the low GFR group, suggesting better preservation of tubular function in the former group. These results suggest that changes in BOLD-MRI after furosemide can differentiate between underperfused kidneys with preserved tubular function and those with tubular dysfunction. This approach may allow more detailed physiologic evaluation of poststenotic kidneys in renovascular hypertension than previously possible.

KW - Oxygenation

KW - Renal artery stenosis

UR - http://www.scopus.com/inward/record.url?scp=70349643619&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=70349643619&partnerID=8YFLogxK

U2 - 10.1152/ajprenal.90757.2008

DO - 10.1152/ajprenal.90757.2008

M3 - Article

C2 - 19640896

AN - SCOPUS:70349643619

VL - 297

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 4

ER -