Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats

Aleksey V. Matveyenko, Senta Georgia, Anil Bhushan, Peter C. Butler

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Embryonic stem cell therapy has been proposed as a therapeutic strategy to restore β-cell mass and function in T1DM. Recently, a group from Novocell (now ViaCyte) reported successful development of glucose-responsive islet-like structures after implantation of pancreatic endoderm (PE) derived from human embryonic stem cells (hESC) into immune-deficient mice. Our objective was to determine whether implantation of hESC-derived pancreatic endoderm from Novocell into athymic nude rats results in development of viable glucose-responsive pancreatic endocrine tissue. Athymic nude rats were implanted with PE derived from hESC either via implantation into the epididymal fat pads or by subcutaneous implantation into TheraCyte encapsulation devices for 20 wk. Blood glucose, weight, and human insulin/C-peptide secretion were monitored by weekly blood draws. Graft β-cell function was assessed by a glucose tolerance test, and graft morphology was assessed by immunohistochemistry and immunofluorescence. At 20 wk postimplantation, epididymal fat-implanted PE progressed to develop islet-like structures in 50% of implants, with a mean β-cell fractional area of 0.8 ± 0.3%. Human C-peptide and insulin were detectable, but at very low levels (C-peptide = 50 ± 26 pmol/l and insulin = 15 ± 7 pmol/l); however, there was no increase in human C-peptide/insulin levels after glucose challenge. There was no development of viable pancreatic tissue or meaningful secretory function when human PE was implanted in the TheraCyte encapsulation devices. These data confirm that islet-like structures develop from hESC differentiated to PE by the protocol developed by NovoCell. However, the extent of endocrine cell formation and secretory function is not yet sufficient to be clinically relevant.

Original languageEnglish (US)
Pages (from-to)E713-E720
JournalAmerican Journal of Physiology - Endocrinology and Metabolism
Volume299
Issue number5
DOIs
StatePublished - Nov 2010

Keywords

  • Insulin secretion
  • Pancreatic ducts
  • Type 1 diabetes

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Physiology
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats'. Together they form a unique fingerprint.

Cite this