In vivo radioiodide imaging and treatment of breast cancer xenografts after MUC1-driven expression of the sodium iodide symporter

Roisin M. Dwyer, Elizabeth R. Bergert, Michael K. O'Connor, Sandra J. Gendler, John C. Morris

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

Purpose: Expression of the sodium iodide symporter (NIS) in the thyroid gland provides for effective imaging and treatment of thyroid cancer using radiolabeled iodide. Transfer of NIS into other tumors would expand the utility of this treatment to tumors of nonthyroid origin. MUC1 is a transmembrane glycoprotein that is overexpressed in many tumor types, including breast, pancreatic, and ovarian. The aim of this study was to create a construct containing NIS under the control of the MUC1 promoter to target expression specifically to MUC1-positive breast cancer cells. Experimental Design: A replication-deficient adenoviral construct was created containing the MUC1 promoter followed by the human NIS gene. Iodide uptake assays, Western blot, and immunohistochemistry were used to confirm NIS expression and function. Breast cancer xenografts in mice were infected with Ad5/MUC1/NIS and then imaged and treated using radioiodide. Results: A 58-fold increase in iodide uptake was observed in infected MUC1-positive T47D cells with no significant increase observed in MUC1-negative MDA-MB-231 cells or in cells infected with the control virus. The in vivo study yielded clear images of Ad/MUC1/NIS-infected tumor xenografts using 123I. Administration of a therapeutic dose of 131I resulted in an 83% reduction in tumor volume, whereas control tumors continued to increase in size (P < 0.01). Conclusions: These results show that the MUC1 promoter is capable of directing efficient and selective expression of the NIS gene in MUC1-positive breast tumor cells. This could potentially have applications for both imaging and therapy in a range of MUC1-positive tumor types.

Original languageEnglish (US)
Pages (from-to)1483-1489
Number of pages7
JournalClinical Cancer Research
Volume11
Issue number4
DOIs
StatePublished - Feb 15 2005

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'In vivo radioiodide imaging and treatment of breast cancer xenografts after MUC1-driven expression of the sodium iodide symporter'. Together they form a unique fingerprint.

Cite this