In vivo distribution of α-synuclein in multiple tissues and biofluids in Parkinson disease

Systemic Synuclein Sampling Study

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

OBJECTIVE: The Systemic Synuclein Sampling Study (S4) measured α-synuclein in multiple tissues and biofluids within the same patients with Parkinson disease (PD) vs healthy controls (HCs). METHODS: S4 was a 6-site cross-sectional observational study of participants with early, moderate, or advanced PD and HCs. Motor and nonmotor measures and dopamine transporter SPECT were obtained. Biopsies of skin, colon, submandibular gland (SMG), CSF, saliva, and blood were collected. Tissue biopsy sections were stained with 5C12 monoclonal antibody against pathologic α-synuclein; digital images were interpreted by neuropathologists blinded to diagnosis. Biofluid total α-synuclein was quantified using ELISA. RESULTS: The final cohort included 59 patients with PD and 21 HCs. CSF α-synuclein was lower in patients with PD vs HCs; sensitivity/specificity of CSF α-synuclein for PD diagnosis was 87.0%/63.2%, respectively. Sensitivity of α-synuclein immunoreactivity for PD diagnosis was 56.1% for SMG and 24.1% for skin; specificity was 92.9% and 100%, respectively. There were no significant relationships between different measures of α-synuclein within participants. CONCLUSIONS: S4 confirms lower total α-synuclein levels in CSF in patients with PD compared to HCs, but specificity is low. In contrast, α-synuclein immunoreactivity in skin and SMG is specific for PD but sensitivity is low. Relationships within participants across different tissues and biofluids could not be demonstrated. Measures of pathologic forms of α-synuclein with higher accuracy are critically needed. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that total CSF α-synuclein does not accurately distinguish patients with PD from HCs, and that monoclonal antibody staining for SMG and skin total α-synuclein is specific but not sensitive for PD diagnosis.

Original languageEnglish (US)
Pages (from-to)e1267-e1284
JournalNeurology
Volume95
Issue number9
DOIs
StatePublished - Sep 1 2020

ASJC Scopus subject areas

  • Clinical Neurology

Fingerprint Dive into the research topics of 'In vivo distribution of α-synuclein in multiple tissues and biofluids in Parkinson disease'. Together they form a unique fingerprint.

Cite this