Imputation methods for missing data for polygenic models.

Brooke Fridley, Kari Rabe, Mariza de Andrade

Research output: Contribution to journalArticle

9 Scopus citations

Abstract

Methods to handle missing data have been an area of statistical research for many years. Little has been done within the context of pedigree analysis. In this paper we present two methods for imputing missing data for polygenic models using family data. The imputation schemes take into account familial relationships and use the observed familial information for the imputation. A traditional multiple imputation approach and multiple imputation or data augmentation approach within a Gibbs sampler for the handling of missing data for a polygenic model are presented.We used both the Genetic Analysis Workshop 13 simulated missing phenotype and the complete phenotype data sets as the means to illustrate the two methods. We looked at the phenotypic trait systolic blood pressure and the covariate gender at time point 11 (1970) for Cohort 1 and time point 1 (1971) for Cohort 2. Comparing the results for three replicates of complete and missing data incorporating multiple imputation, we find that multiple imputation via a Gibbs sampler produces more accurate results. Thus, we recommend the Gibbs sampler for imputation purposes because of the ease with which it can be extended to more complicated models, the consistency of the results, and the accountability of the variation due to imputation.

Original languageEnglish (US)
JournalBMC genetics
Volume4 Suppl 1
StatePublished - 2003

ASJC Scopus subject areas

  • Genetics
  • Genetics(clinical)

Fingerprint Dive into the research topics of 'Imputation methods for missing data for polygenic models.'. Together they form a unique fingerprint.

  • Cite this