Improvements in low contrast detectability with iterative reconstruction and the effect of slice thickness

Scott S. Hsieh, Norbert J. Pelc

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Iterative reconstruction has become a popular route for dose reduction in CT scans. One method for assessing the dose reduction of iterative reconstruction is to use a low contrast detectability phantom. The apparent improvement in detectability can be very large on these phantoms, with many studies showing dose reduction in excess of 50%. In this work, we show that much of the advantage of iterative reconstruction in this context can be explained by differences in slice thickness. After adjusting the effective reconstruction kernel by blurring filtered backprojection images to match the shape of the noise power spectrum of iterative reconstruction, we produce thick slices and compare the two reconstruction algorithms. The remaining improvement from iterative reconstruction, at least in scans with relatively uniform statistics in the raw data, is significantly reduced. Hence, the effective slice thickness in iterative reconstruction may be larger than that of filtered backprojection, explaining some of the improvement in image quality.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2017
Subtitle of host publicationPhysics of Medical Imaging
EditorsTaly Gilat Schmidt, Joseph Y. Lo, Thomas G. Flohr
PublisherSPIE
ISBN (Electronic)9781510607095
DOIs
StatePublished - 2017
EventMedical Imaging 2017: Physics of Medical Imaging - Orlando, United States
Duration: Feb 13 2017Feb 16 2017

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10132
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2017: Physics of Medical Imaging
CountryUnited States
CityOrlando
Period2/13/172/16/17

Keywords

  • Dose reconstruction
  • Iterative reconstruction
  • Slice sensitivity profile

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Improvements in low contrast detectability with iterative reconstruction and the effect of slice thickness'. Together they form a unique fingerprint.

Cite this