Impact of pulsatility on the ensemble orderliness (approximate entropy) of neurohormone secretion

J. D. Veldhuis, M. L. Johnson, O. L. Veldhuis, M. Straume, S. M. Pincus

Research output: Contribution to journalArticle

74 Scopus citations

Abstract

Regular patterns of neurohormone secretion are driven by underlying pulsatile and subordinate (feedback sensitive) dynamics. Measures of time-series orderliness, e.g., the approximate entropy (ApEn) statistic (Pincus SM. Proc Natl Acad Sci 88: 2297-2301, 1991), vividly discriminate pathological and physiological patterns of hormone release. To investigate how specific pulsatility features impact regularity estimates, we have examined the sensitivity of the ApEn metric to systematic variations in the frequency, amplitude, and half-life of simulated neurohormone pulse trains (Veldhuis JD, Carlson ML, and Johnson ML. Proc Natl Acad Sci 84: 7686-7690, 1987) and compared the impact of a high vs. low baseline luteinizing hormone (LH) pattern regularity state mimicking the normal female luteal phase and the young male, respectively. Shortening the interpulse interval length elevated ApEn in both pulsatility models, thereby signifying greater ensemble series irregularity. The frequency sensitivity of ApEn was robust to several complementary renditions of ApEn and to variations in experimental uncertainty, basal (nonpulsatile) LH secretion, and secretory burst amplitude. ApEn rose with increasing hormone half-life, especially in the face of low baseline variability emulated by midluteal LH secretion profiles. High variability of secretory burst amplitude, pulse duration, or interpeak intervals increased ApEn in the more orderly femalelike construct; in the highly irregular malelike LH pulse model, these variability changes had little effect on ApEn. In summary, the ensemble regularity statistic, ApEn, quantifies unequal pattern orderliness in neurohormone pulse trains with minimal dependence on mean pulse amplitude, interpulse baseline, or (subthreshold) sample uncertainty. Thus ApEn monitors changing secretory event frequency and interpulse variability with sensitivity to starting pattern regularity, providing a mechanistic linkage between model evolution and statistical change.

Original languageEnglish (US)
Pages (from-to)R1975-R1985
JournalAmerican Journal of Physiology - Regulatory Integrative and Comparative Physiology
Volume281
Issue number6 50-6
DOIs
StatePublished - 2001

Keywords

  • Biomathematics
  • Hormone release
  • Patterns
  • Statistics

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Impact of pulsatility on the ensemble orderliness (approximate entropy) of neurohormone secretion'. Together they form a unique fingerprint.

  • Cite this