Image reconstruction from rebinned helical cone-beam projection data

Dan Xia, Lifeng Yu, Junguo Bian, Xiaochuan Pan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this work, wo introduced an algorithm for image reconstruction in helical cone-boam CT based upon the backprojection-filtration (BPF) algorithm. This algorithm is a backprojection-filtration-type algorithm that reconstructs images from rebinned data. It retains the properties of the original BPF algorithm in that it requires minimum data and can reconstruct ROI images from truncated data. More importantly, due to the elimination of the spatially-variant weighting factor in the backprojection, it may improve the noise properties in reconstructed images. We have performed computer-simulation studies to investigate the ROI-image reconstruction and noise properties of this algorithm, and the quantitative results verify and demonstrate the proposed algorithm.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2007
Subtitle of host publicationPhysics of Medical Imaging
EditionPART 3
DOIs
StatePublished - Oct 15 2007
EventMedical Imaging 2007: Physics of Medical Imaging - San Diego, CA, United States
Duration: Feb 18 2007Feb 22 2007

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
NumberPART 3
Volume6510
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2007: Physics of Medical Imaging
CountryUnited States
CitySan Diego, CA
Period2/18/072/22/07

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Image reconstruction from rebinned helical cone-beam projection data'. Together they form a unique fingerprint.

Cite this