Image reconstruction and image quality evaluation for a dual source CT scanner

T. G. Flohr, H. Bruder, K. Stierstorfer, M. Petersilka, B. Schmidt, Cynthia H McCollough

Research output: Contribution to journalArticle

59 Citations (Scopus)

Abstract

The authors present and evaluate concepts for image reconstruction in dual source CT (DSCT). They describe both standard spiral (helical) DSCT image reconstruction and electrocardiogram (ECG)-synchronized image reconstruction. For a compact mechanical design of the DSCT, one detector (A) can cover the full scan field of view, while the other detector (B) has to be restricted to a smaller, central field of view. The authors develop an algorithm for scan data completion, extrapolating truncated data of detector (B) by using data of detector (A). They propose a unified framework for convolution and simultaneous 3D backprojection of both (A) and (B) data, with similar treatment of standard spiral, ECG-gated spiral, and sequential (axial) scan data. In ECG-synchronized image reconstruction, a flexible scan data range per measurement system can be used to trade off temporal resolution for reduced image noise. Both data extrapolation and image reconstruction are evaluated by means of computer simulated data of anthropomorphic phantoms, by phantom measurements and patient studies. The authors show that a consistent filter direction along the spiral tangent on both detectors is essential to reduce cone-beam artifacts, requiring truncation of the extrapolated (B) data after convolution in standard spiral scans. Reconstructions of an anthropomorphic thorax phantom demonstrate good image quality and dose accumulation as theoretically expected for simultaneous 3D backprojection of the filtered (A) data and the truncated filtered (B) data into the same 3D image volume. In ECG-gated spiral modes, spiral slice sensitivity profiles (SSPs) show only minor dependence on the patient's heart rate if the spiral pitch is properly adapted. Measurements with a thin gold plate phantom result in effective slice widths (full width at half maximum of the SSP) of 0.63-0.69 mm for the nominal 0.6 mm slice and 0.82-0.87 mm for the nominal 0.75 mm slice. The visually determined through-plane (z axis) spatial resolution in a bar pattern phantom is 0.33-0.36 mm for the nominal 0.6 mm slice and 0.45 mm for the nominal 0.75 mm slice, again almost independent of the patient's heart rate. The authors verify the theoretically expected temporal resolution of 83 ms at 330 ms gantry rotation time by blur free images of a moving coronary artery phantom with 90 ms rest phase and demonstrate image noise reduction as predicted for increased reconstruction data ranges per measurement system. Finally, they show that the smoothness of the transition between image stacks acquired in different cardiac cycles can be efficiently controlled with the proposed approach for ECG-synchronized image reconstruction.

Original languageEnglish (US)
Pages (from-to)5882-5897
Number of pages16
JournalMedical Physics
Volume35
Issue number12
DOIs
StatePublished - 2008

Fingerprint

Computer-Assisted Image Processing
Electrocardiography
Heart Rate
Gold
Artifacts
Coronary Vessels
Thorax

Keywords

  • Cardiac CT
  • CT image quality evaluation
  • CT image reconstruction
  • Dual source CT
  • Multidetector row CT

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Cite this

Flohr, T. G., Bruder, H., Stierstorfer, K., Petersilka, M., Schmidt, B., & McCollough, C. H. (2008). Image reconstruction and image quality evaluation for a dual source CT scanner. Medical Physics, 35(12), 5882-5897. https://doi.org/10.1118/1.3020756

Image reconstruction and image quality evaluation for a dual source CT scanner. / Flohr, T. G.; Bruder, H.; Stierstorfer, K.; Petersilka, M.; Schmidt, B.; McCollough, Cynthia H.

In: Medical Physics, Vol. 35, No. 12, 2008, p. 5882-5897.

Research output: Contribution to journalArticle

Flohr, TG, Bruder, H, Stierstorfer, K, Petersilka, M, Schmidt, B & McCollough, CH 2008, 'Image reconstruction and image quality evaluation for a dual source CT scanner', Medical Physics, vol. 35, no. 12, pp. 5882-5897. https://doi.org/10.1118/1.3020756
Flohr, T. G. ; Bruder, H. ; Stierstorfer, K. ; Petersilka, M. ; Schmidt, B. ; McCollough, Cynthia H. / Image reconstruction and image quality evaluation for a dual source CT scanner. In: Medical Physics. 2008 ; Vol. 35, No. 12. pp. 5882-5897.
@article{3d484fd1c81a4d2298e8c98664e96701,
title = "Image reconstruction and image quality evaluation for a dual source CT scanner",
abstract = "The authors present and evaluate concepts for image reconstruction in dual source CT (DSCT). They describe both standard spiral (helical) DSCT image reconstruction and electrocardiogram (ECG)-synchronized image reconstruction. For a compact mechanical design of the DSCT, one detector (A) can cover the full scan field of view, while the other detector (B) has to be restricted to a smaller, central field of view. The authors develop an algorithm for scan data completion, extrapolating truncated data of detector (B) by using data of detector (A). They propose a unified framework for convolution and simultaneous 3D backprojection of both (A) and (B) data, with similar treatment of standard spiral, ECG-gated spiral, and sequential (axial) scan data. In ECG-synchronized image reconstruction, a flexible scan data range per measurement system can be used to trade off temporal resolution for reduced image noise. Both data extrapolation and image reconstruction are evaluated by means of computer simulated data of anthropomorphic phantoms, by phantom measurements and patient studies. The authors show that a consistent filter direction along the spiral tangent on both detectors is essential to reduce cone-beam artifacts, requiring truncation of the extrapolated (B) data after convolution in standard spiral scans. Reconstructions of an anthropomorphic thorax phantom demonstrate good image quality and dose accumulation as theoretically expected for simultaneous 3D backprojection of the filtered (A) data and the truncated filtered (B) data into the same 3D image volume. In ECG-gated spiral modes, spiral slice sensitivity profiles (SSPs) show only minor dependence on the patient's heart rate if the spiral pitch is properly adapted. Measurements with a thin gold plate phantom result in effective slice widths (full width at half maximum of the SSP) of 0.63-0.69 mm for the nominal 0.6 mm slice and 0.82-0.87 mm for the nominal 0.75 mm slice. The visually determined through-plane (z axis) spatial resolution in a bar pattern phantom is 0.33-0.36 mm for the nominal 0.6 mm slice and 0.45 mm for the nominal 0.75 mm slice, again almost independent of the patient's heart rate. The authors verify the theoretically expected temporal resolution of 83 ms at 330 ms gantry rotation time by blur free images of a moving coronary artery phantom with 90 ms rest phase and demonstrate image noise reduction as predicted for increased reconstruction data ranges per measurement system. Finally, they show that the smoothness of the transition between image stacks acquired in different cardiac cycles can be efficiently controlled with the proposed approach for ECG-synchronized image reconstruction.",
keywords = "Cardiac CT, CT image quality evaluation, CT image reconstruction, Dual source CT, Multidetector row CT",
author = "Flohr, {T. G.} and H. Bruder and K. Stierstorfer and M. Petersilka and B. Schmidt and McCollough, {Cynthia H}",
year = "2008",
doi = "10.1118/1.3020756",
language = "English (US)",
volume = "35",
pages = "5882--5897",
journal = "Medical Physics",
issn = "0094-2405",
publisher = "AAPM - American Association of Physicists in Medicine",
number = "12",

}

TY - JOUR

T1 - Image reconstruction and image quality evaluation for a dual source CT scanner

AU - Flohr, T. G.

AU - Bruder, H.

AU - Stierstorfer, K.

AU - Petersilka, M.

AU - Schmidt, B.

AU - McCollough, Cynthia H

PY - 2008

Y1 - 2008

N2 - The authors present and evaluate concepts for image reconstruction in dual source CT (DSCT). They describe both standard spiral (helical) DSCT image reconstruction and electrocardiogram (ECG)-synchronized image reconstruction. For a compact mechanical design of the DSCT, one detector (A) can cover the full scan field of view, while the other detector (B) has to be restricted to a smaller, central field of view. The authors develop an algorithm for scan data completion, extrapolating truncated data of detector (B) by using data of detector (A). They propose a unified framework for convolution and simultaneous 3D backprojection of both (A) and (B) data, with similar treatment of standard spiral, ECG-gated spiral, and sequential (axial) scan data. In ECG-synchronized image reconstruction, a flexible scan data range per measurement system can be used to trade off temporal resolution for reduced image noise. Both data extrapolation and image reconstruction are evaluated by means of computer simulated data of anthropomorphic phantoms, by phantom measurements and patient studies. The authors show that a consistent filter direction along the spiral tangent on both detectors is essential to reduce cone-beam artifacts, requiring truncation of the extrapolated (B) data after convolution in standard spiral scans. Reconstructions of an anthropomorphic thorax phantom demonstrate good image quality and dose accumulation as theoretically expected for simultaneous 3D backprojection of the filtered (A) data and the truncated filtered (B) data into the same 3D image volume. In ECG-gated spiral modes, spiral slice sensitivity profiles (SSPs) show only minor dependence on the patient's heart rate if the spiral pitch is properly adapted. Measurements with a thin gold plate phantom result in effective slice widths (full width at half maximum of the SSP) of 0.63-0.69 mm for the nominal 0.6 mm slice and 0.82-0.87 mm for the nominal 0.75 mm slice. The visually determined through-plane (z axis) spatial resolution in a bar pattern phantom is 0.33-0.36 mm for the nominal 0.6 mm slice and 0.45 mm for the nominal 0.75 mm slice, again almost independent of the patient's heart rate. The authors verify the theoretically expected temporal resolution of 83 ms at 330 ms gantry rotation time by blur free images of a moving coronary artery phantom with 90 ms rest phase and demonstrate image noise reduction as predicted for increased reconstruction data ranges per measurement system. Finally, they show that the smoothness of the transition between image stacks acquired in different cardiac cycles can be efficiently controlled with the proposed approach for ECG-synchronized image reconstruction.

AB - The authors present and evaluate concepts for image reconstruction in dual source CT (DSCT). They describe both standard spiral (helical) DSCT image reconstruction and electrocardiogram (ECG)-synchronized image reconstruction. For a compact mechanical design of the DSCT, one detector (A) can cover the full scan field of view, while the other detector (B) has to be restricted to a smaller, central field of view. The authors develop an algorithm for scan data completion, extrapolating truncated data of detector (B) by using data of detector (A). They propose a unified framework for convolution and simultaneous 3D backprojection of both (A) and (B) data, with similar treatment of standard spiral, ECG-gated spiral, and sequential (axial) scan data. In ECG-synchronized image reconstruction, a flexible scan data range per measurement system can be used to trade off temporal resolution for reduced image noise. Both data extrapolation and image reconstruction are evaluated by means of computer simulated data of anthropomorphic phantoms, by phantom measurements and patient studies. The authors show that a consistent filter direction along the spiral tangent on both detectors is essential to reduce cone-beam artifacts, requiring truncation of the extrapolated (B) data after convolution in standard spiral scans. Reconstructions of an anthropomorphic thorax phantom demonstrate good image quality and dose accumulation as theoretically expected for simultaneous 3D backprojection of the filtered (A) data and the truncated filtered (B) data into the same 3D image volume. In ECG-gated spiral modes, spiral slice sensitivity profiles (SSPs) show only minor dependence on the patient's heart rate if the spiral pitch is properly adapted. Measurements with a thin gold plate phantom result in effective slice widths (full width at half maximum of the SSP) of 0.63-0.69 mm for the nominal 0.6 mm slice and 0.82-0.87 mm for the nominal 0.75 mm slice. The visually determined through-plane (z axis) spatial resolution in a bar pattern phantom is 0.33-0.36 mm for the nominal 0.6 mm slice and 0.45 mm for the nominal 0.75 mm slice, again almost independent of the patient's heart rate. The authors verify the theoretically expected temporal resolution of 83 ms at 330 ms gantry rotation time by blur free images of a moving coronary artery phantom with 90 ms rest phase and demonstrate image noise reduction as predicted for increased reconstruction data ranges per measurement system. Finally, they show that the smoothness of the transition between image stacks acquired in different cardiac cycles can be efficiently controlled with the proposed approach for ECG-synchronized image reconstruction.

KW - Cardiac CT

KW - CT image quality evaluation

KW - CT image reconstruction

KW - Dual source CT

KW - Multidetector row CT

UR - http://www.scopus.com/inward/record.url?scp=56749185909&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=56749185909&partnerID=8YFLogxK

U2 - 10.1118/1.3020756

DO - 10.1118/1.3020756

M3 - Article

C2 - 19175144

AN - SCOPUS:56749185909

VL - 35

SP - 5882

EP - 5897

JO - Medical Physics

JF - Medical Physics

SN - 0094-2405

IS - 12

ER -