Identifying epileptic source location and extent: An iterative sparse electromagnetic source imaging algorithm

Abbas Sohrabpour, Yunfeng Lu, Gregory Worrell, Bin He

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper we have introduced a novel electromagnetic source imaging (ESI) technique and demonstrated its validity and excellent performance in imaging the location and extent of underlying epileptic sources in patients suffering from focal epilepsy. The proposed algorithm employs ideas from sparse signal processing literature and convex optimization theories to improve source imaging results obtained from scalp-recorded electroencephalogram (EEG). EEG source imaging results generally use subjective methods to determine the extent of the underlying brain activity. The proposed technique provides significant improvement in dealing with such shortcomings and eliminates the need for thresholding. The results of our computer simulations and clinical validation study demonstrate the excellent performance of the proposed algorithm and suggest it may become a useful tool for objectively determining the location and extent of focal epileptic activity in a noninvasive fashion.

Original languageEnglish (US)
Title of host publication2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages109-112
Number of pages4
ISBN (Electronic)9781457702204
DOIs
StatePublished - Oct 13 2016
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States
Duration: Aug 16 2016Aug 20 2016

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2016-October
ISSN (Print)1557-170X

Other

Other38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Country/TerritoryUnited States
CityOrlando
Period8/16/168/20/16

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Identifying epileptic source location and extent: An iterative sparse electromagnetic source imaging algorithm'. Together they form a unique fingerprint.

Cite this