Identification of sex-associated network patterns in Vaccine-Adverse Event Association Network in VAERS

Yuji Zhang, Puqiang Wu, Yi Luo, Cui Tao

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Background: Vaccines are one of the most important public health successes in last century. Besides effectiveness in reducing the morbidity and mortality from many infectious diseases, a successful vaccine program also requires a rigorous assessment on their safety. Due to the limitations of adverse event (AE) data from clinical trials and post-approval surveillance systems, novel computational approaches are needed to organize, visualize, and analyze such high-dimensional complex data. Results: In this paper, we proposed a network-based approach to investigate the vaccine-AE association network from the Vaccine AE Reporting System (VAERS) data. Statistical summary was calculated using the VAERS raw data and represented in the Resource Description Framework (RDF). The RDF graph was leveraged for network analysis. Specifically, we compared network properties of (1) vaccine - adverse event association network based on reports collected over a 23 year period as well as each year; and (2) sex-specific vaccine-adverse event association network. We observed that (1) network diameter and average path length don't change dramatically over a 23-year period, while the average node degree of these networks changes due to the different number of reports during different periods of time; (2) vaccine - adverse event associations derived from different sexes show sex-associated patterns in sex-specific vaccine-AE association networks. Conclusions: We have developed a network-based approach to investigate the vaccine-AE association network from the VAERS data. To our knowledge, this is the first time that a network-based approach was used to identify sex-specific association patterns in a spontaneous reporting system database. Due to unique limitations of such passive surveillance systems, our proposed network-based approaches have the potential to summarize and analyze the associations in passive surveillance systems by (1) identifying nodes of importance, irrespective of whether they are disproportionally reported; (2) providing guidance on sex-specific recommendations in personalized vaccinology.

Original languageEnglish (US)
Article number33
JournalJournal of Biomedical Semantics
Volume6
Issue number1
DOIs
StatePublished - Aug 19 2015
Externally publishedYes

Fingerprint

Vaccines
Information Systems
Research Design
Public health
Electric network analysis
Communicable Diseases
Public Health
Clinical Trials
Databases
Morbidity
Safety

ASJC Scopus subject areas

  • Information Systems
  • Computer Science Applications
  • Computer Networks and Communications
  • Health Informatics

Cite this

Identification of sex-associated network patterns in Vaccine-Adverse Event Association Network in VAERS. / Zhang, Yuji; Wu, Puqiang; Luo, Yi; Tao, Cui.

In: Journal of Biomedical Semantics, Vol. 6, No. 1, 33, 19.08.2015.

Research output: Contribution to journalArticle

@article{a25c7b35180e46f186f3870e524a2a0b,
title = "Identification of sex-associated network patterns in Vaccine-Adverse Event Association Network in VAERS",
abstract = "Background: Vaccines are one of the most important public health successes in last century. Besides effectiveness in reducing the morbidity and mortality from many infectious diseases, a successful vaccine program also requires a rigorous assessment on their safety. Due to the limitations of adverse event (AE) data from clinical trials and post-approval surveillance systems, novel computational approaches are needed to organize, visualize, and analyze such high-dimensional complex data. Results: In this paper, we proposed a network-based approach to investigate the vaccine-AE association network from the Vaccine AE Reporting System (VAERS) data. Statistical summary was calculated using the VAERS raw data and represented in the Resource Description Framework (RDF). The RDF graph was leveraged for network analysis. Specifically, we compared network properties of (1) vaccine - adverse event association network based on reports collected over a 23 year period as well as each year; and (2) sex-specific vaccine-adverse event association network. We observed that (1) network diameter and average path length don't change dramatically over a 23-year period, while the average node degree of these networks changes due to the different number of reports during different periods of time; (2) vaccine - adverse event associations derived from different sexes show sex-associated patterns in sex-specific vaccine-AE association networks. Conclusions: We have developed a network-based approach to investigate the vaccine-AE association network from the VAERS data. To our knowledge, this is the first time that a network-based approach was used to identify sex-specific association patterns in a spontaneous reporting system database. Due to unique limitations of such passive surveillance systems, our proposed network-based approaches have the potential to summarize and analyze the associations in passive surveillance systems by (1) identifying nodes of importance, irrespective of whether they are disproportionally reported; (2) providing guidance on sex-specific recommendations in personalized vaccinology.",
author = "Yuji Zhang and Puqiang Wu and Yi Luo and Cui Tao",
year = "2015",
month = "8",
day = "19",
doi = "10.1186/s13326-015-0032-2",
language = "English (US)",
volume = "6",
journal = "Journal of Biomedical Semantics",
issn = "2041-1480",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Identification of sex-associated network patterns in Vaccine-Adverse Event Association Network in VAERS

AU - Zhang, Yuji

AU - Wu, Puqiang

AU - Luo, Yi

AU - Tao, Cui

PY - 2015/8/19

Y1 - 2015/8/19

N2 - Background: Vaccines are one of the most important public health successes in last century. Besides effectiveness in reducing the morbidity and mortality from many infectious diseases, a successful vaccine program also requires a rigorous assessment on their safety. Due to the limitations of adverse event (AE) data from clinical trials and post-approval surveillance systems, novel computational approaches are needed to organize, visualize, and analyze such high-dimensional complex data. Results: In this paper, we proposed a network-based approach to investigate the vaccine-AE association network from the Vaccine AE Reporting System (VAERS) data. Statistical summary was calculated using the VAERS raw data and represented in the Resource Description Framework (RDF). The RDF graph was leveraged for network analysis. Specifically, we compared network properties of (1) vaccine - adverse event association network based on reports collected over a 23 year period as well as each year; and (2) sex-specific vaccine-adverse event association network. We observed that (1) network diameter and average path length don't change dramatically over a 23-year period, while the average node degree of these networks changes due to the different number of reports during different periods of time; (2) vaccine - adverse event associations derived from different sexes show sex-associated patterns in sex-specific vaccine-AE association networks. Conclusions: We have developed a network-based approach to investigate the vaccine-AE association network from the VAERS data. To our knowledge, this is the first time that a network-based approach was used to identify sex-specific association patterns in a spontaneous reporting system database. Due to unique limitations of such passive surveillance systems, our proposed network-based approaches have the potential to summarize and analyze the associations in passive surveillance systems by (1) identifying nodes of importance, irrespective of whether they are disproportionally reported; (2) providing guidance on sex-specific recommendations in personalized vaccinology.

AB - Background: Vaccines are one of the most important public health successes in last century. Besides effectiveness in reducing the morbidity and mortality from many infectious diseases, a successful vaccine program also requires a rigorous assessment on their safety. Due to the limitations of adverse event (AE) data from clinical trials and post-approval surveillance systems, novel computational approaches are needed to organize, visualize, and analyze such high-dimensional complex data. Results: In this paper, we proposed a network-based approach to investigate the vaccine-AE association network from the Vaccine AE Reporting System (VAERS) data. Statistical summary was calculated using the VAERS raw data and represented in the Resource Description Framework (RDF). The RDF graph was leveraged for network analysis. Specifically, we compared network properties of (1) vaccine - adverse event association network based on reports collected over a 23 year period as well as each year; and (2) sex-specific vaccine-adverse event association network. We observed that (1) network diameter and average path length don't change dramatically over a 23-year period, while the average node degree of these networks changes due to the different number of reports during different periods of time; (2) vaccine - adverse event associations derived from different sexes show sex-associated patterns in sex-specific vaccine-AE association networks. Conclusions: We have developed a network-based approach to investigate the vaccine-AE association network from the VAERS data. To our knowledge, this is the first time that a network-based approach was used to identify sex-specific association patterns in a spontaneous reporting system database. Due to unique limitations of such passive surveillance systems, our proposed network-based approaches have the potential to summarize and analyze the associations in passive surveillance systems by (1) identifying nodes of importance, irrespective of whether they are disproportionally reported; (2) providing guidance on sex-specific recommendations in personalized vaccinology.

UR - http://www.scopus.com/inward/record.url?scp=84939537225&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84939537225&partnerID=8YFLogxK

U2 - 10.1186/s13326-015-0032-2

DO - 10.1186/s13326-015-0032-2

M3 - Article

AN - SCOPUS:84939537225

VL - 6

JO - Journal of Biomedical Semantics

JF - Journal of Biomedical Semantics

SN - 2041-1480

IS - 1

M1 - 33

ER -