TY - JOUR
T1 - Hypoxic preconditioning induces epigenetic changes and modifies swine mesenchymal stem cell angiogenesis and senescence in experimental atherosclerotic renal artery stenosis
AU - Isik, Busra
AU - Thaler, Roman
AU - Goksu, Busra B.
AU - Conley, Sabena M.
AU - Al-Khafaji, Hayder
AU - Mohan, Arjunmohan
AU - Afarideh, Mohsen
AU - Abumoawad, Abdelrhman M.
AU - Zhu, Xiang Y.
AU - Krier, James D.
AU - Saadiq, Ishran M.
AU - Tang, Hui
AU - Eirin, Alfonso
AU - Hickson, La Tonya J.
AU - van Wijnen, Andre J.
AU - Textor, Stephen C.
AU - Lerman, Lilach O.
AU - Herrmann, Sandra M.
N1 - Funding Information:
This project was partly supported by the National Institutes of Health (NIH) grants. Dr. Sandra M. Herrmann is supported by K08 DK118120 from the NIDDK and by Mary Kathryn and Michael B. Panitch Career Development Award. Dr. Lilach Lerman is supported by the National Institute of Health National Institute of Health DK122734, DK120292, and AG062104; Dr. LaTonya Hickson National Institute of Health DK109134 (LJH) and DK123492 (LJH), and the NIDDK Diabetic Complications Consortium (RRID:SCR_001415, www.diacomp.org ) grants DK076169 and DK11525; and Dr. Alfonso Eirin DK122137 from the NIDDK. Dr. Sabena Conley is supported by the Burroughs Wellcome Fund, and Dr. Andre van Wijnen is supported by a NIAMS R01 (AR049069).
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background: Atherosclerotic renal artery stenosis (ARAS) is a risk factor for ischemic and hypertensive kidney disease (HKD) for which autologous mesenchymal stem cell (MSC) appears to be a promising therapy. However, MSCs from ARAS patients exhibit impaired function, senescence, and DNA damage, possibly due to epigenetic mechanisms. Hypoxia preconditioning (HPC) exerts beneficial effects on cellular proliferation, differentiation, and gene and protein expression. We hypothesized that HPC could influence MSC function and senescence in ARAS by epigenetic mechanisms and modulating gene expression of chromatin-modifying enzymes. Methods: Adipose-derived MSC harvested from healthy control (N = 8) and ARAS (N = 8) pigs were cultured under normoxia (20%O2) or hypoxia (1%O2) conditions. MSC function was assessed by migration, proliferation, and cytokine release in conditioned media. MSC senescence was evaluated by SA-β-gal activity. Specific pro-angiogenic and senescence genes were assessed by reverse transcription polymerase chain reaction (RT-PCR). Dot blotting was used to measure global genome 5-hydroxymethylcytosine (5hmC) levels on DNA and Western blotting of modified histone 3 (H3) proteins to quantify tri-methylated lysine-4 (H3K4me3), lysine-9 (H3K9me3), and lysine-27 (H3K27me3) residues. Results: Specific pro-angiogenic genes in ARAS assessed by RT-PCR were lower at baseline but increased under HPC, while pro-senescence genes were higher in ARAS at baseline as compared healthy MSCs. ARAS MSCs under basal conditions, displayed higher H3K4me3, H3K27me3, and 5hmC levels compared to healthy MSCs. During HPC, global 5hmC levels were decreased while no appreciable changes occurred in histone H3 tri-methylation. ARAS MSCs cultured under HPC had higher migratory and proliferative capacity as well as increased vascular endothelial growth factor and epidermal growth factor expression compared to normoxia, and SA-β-gal activity decreased in both animal groups. Conclusions: These data demonstrate that swine ARAS MSCs have decreased angiogenesis and increased senescence compared to healthy MSCs and that HPC mitigates MSC dysfunction, senescence, and DNA hydroxymethylation in ARAS MSC. Thus, HPC for MSCs may be considered for their optimization to improve autologous cell therapy in patients with nephropathies.
AB - Background: Atherosclerotic renal artery stenosis (ARAS) is a risk factor for ischemic and hypertensive kidney disease (HKD) for which autologous mesenchymal stem cell (MSC) appears to be a promising therapy. However, MSCs from ARAS patients exhibit impaired function, senescence, and DNA damage, possibly due to epigenetic mechanisms. Hypoxia preconditioning (HPC) exerts beneficial effects on cellular proliferation, differentiation, and gene and protein expression. We hypothesized that HPC could influence MSC function and senescence in ARAS by epigenetic mechanisms and modulating gene expression of chromatin-modifying enzymes. Methods: Adipose-derived MSC harvested from healthy control (N = 8) and ARAS (N = 8) pigs were cultured under normoxia (20%O2) or hypoxia (1%O2) conditions. MSC function was assessed by migration, proliferation, and cytokine release in conditioned media. MSC senescence was evaluated by SA-β-gal activity. Specific pro-angiogenic and senescence genes were assessed by reverse transcription polymerase chain reaction (RT-PCR). Dot blotting was used to measure global genome 5-hydroxymethylcytosine (5hmC) levels on DNA and Western blotting of modified histone 3 (H3) proteins to quantify tri-methylated lysine-4 (H3K4me3), lysine-9 (H3K9me3), and lysine-27 (H3K27me3) residues. Results: Specific pro-angiogenic genes in ARAS assessed by RT-PCR were lower at baseline but increased under HPC, while pro-senescence genes were higher in ARAS at baseline as compared healthy MSCs. ARAS MSCs under basal conditions, displayed higher H3K4me3, H3K27me3, and 5hmC levels compared to healthy MSCs. During HPC, global 5hmC levels were decreased while no appreciable changes occurred in histone H3 tri-methylation. ARAS MSCs cultured under HPC had higher migratory and proliferative capacity as well as increased vascular endothelial growth factor and epidermal growth factor expression compared to normoxia, and SA-β-gal activity decreased in both animal groups. Conclusions: These data demonstrate that swine ARAS MSCs have decreased angiogenesis and increased senescence compared to healthy MSCs and that HPC mitigates MSC dysfunction, senescence, and DNA hydroxymethylation in ARAS MSC. Thus, HPC for MSCs may be considered for their optimization to improve autologous cell therapy in patients with nephropathies.
KW - Adipose mesenchymal stromal cells
KW - Angiogenesis
KW - Atherosclerotic renal artery stenosis
KW - Chromatin organization
KW - Epigenetics
KW - Hydroxymethylation
KW - Hypoxia
KW - Mesenchymal stem cells
KW - Senescence
UR - http://www.scopus.com/inward/record.url?scp=85104468135&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85104468135&partnerID=8YFLogxK
U2 - 10.1186/s13287-021-02310-z
DO - 10.1186/s13287-021-02310-z
M3 - Article
C2 - 33853680
AN - SCOPUS:85104468135
VL - 12
JO - Stem Cell Research and Therapy
JF - Stem Cell Research and Therapy
SN - 1757-6512
IS - 1
M1 - 240
ER -