Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis

Tui Neri, Emilye Hiriart, Patrick P. van Vliet, Emilie Faure, Russell A. Norris, Batoul Farhat, Bernd Jagla, Julie Lefrancois, Yukiko Sugi, Thomas Moore-Morris, Stéphane Zaffran, Randolph S. Faustino, Alexander C. Zambon, Jean Pierre Desvignes, David Salgado, Robert A. Levine, Jose Luis de la Pompa, Andre Terzic, Sylvia M. Evans, Roger MarkwaldMichel Pucéat

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Genetically modified mice have advanced our understanding of valve development and disease. Yet, human pathophysiological valvulogenesis remains poorly understood. Here we report that, by combining single cell sequencing and in vivo approaches, a population of human pre-valvular endocardial cells (HPVCs) can be derived from pluripotent stem cells. HPVCs express gene patterns conforming to the E9.0 mouse atrio-ventricular canal (AVC) endocardium signature. HPVCs treated with BMP2, cultured on mouse AVC cushions, or transplanted into the AVC of embryonic mouse hearts, undergo endothelial-to-mesenchymal transition and express markers of valve interstitial cells of different valvular layers, demonstrating cell specificity. Extending this model to patient-specific induced pluripotent stem cells recapitulates features of mitral valve prolapse and identified dysregulation of the SHH pathway. Concurrently increased ECM secretion can be rescued by SHH inhibition, thus providing a putative therapeutic target. In summary, we report a human cell model of valvulogenesis that faithfully recapitulates valve disease in a dish.

Original languageEnglish (US)
Article number1929
JournalNature communications
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2019

Fingerprint

Pluripotent Stem Cells
stem cells
Canals
Stem cells
canals
mice
cells
Cells
Military electronic countermeasures
Genes
cushions
secretions
sequencing
parabolic reflectors
Endocardium
Induced Pluripotent Stem Cells
Mitral Valve Prolapse
genes
markers
interstitials

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Cite this

Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis. / Neri, Tui; Hiriart, Emilye; van Vliet, Patrick P.; Faure, Emilie; Norris, Russell A.; Farhat, Batoul; Jagla, Bernd; Lefrancois, Julie; Sugi, Yukiko; Moore-Morris, Thomas; Zaffran, Stéphane; Faustino, Randolph S.; Zambon, Alexander C.; Desvignes, Jean Pierre; Salgado, David; Levine, Robert A.; de la Pompa, Jose Luis; Terzic, Andre; Evans, Sylvia M.; Markwald, Roger; Pucéat, Michel.

In: Nature communications, Vol. 10, No. 1, 1929, 01.12.2019.

Research output: Contribution to journalArticle

Neri, T, Hiriart, E, van Vliet, PP, Faure, E, Norris, RA, Farhat, B, Jagla, B, Lefrancois, J, Sugi, Y, Moore-Morris, T, Zaffran, S, Faustino, RS, Zambon, AC, Desvignes, JP, Salgado, D, Levine, RA, de la Pompa, JL, Terzic, A, Evans, SM, Markwald, R & Pucéat, M 2019, 'Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis', Nature communications, vol. 10, no. 1, 1929. https://doi.org/10.1038/s41467-019-09459-5
Neri, Tui ; Hiriart, Emilye ; van Vliet, Patrick P. ; Faure, Emilie ; Norris, Russell A. ; Farhat, Batoul ; Jagla, Bernd ; Lefrancois, Julie ; Sugi, Yukiko ; Moore-Morris, Thomas ; Zaffran, Stéphane ; Faustino, Randolph S. ; Zambon, Alexander C. ; Desvignes, Jean Pierre ; Salgado, David ; Levine, Robert A. ; de la Pompa, Jose Luis ; Terzic, Andre ; Evans, Sylvia M. ; Markwald, Roger ; Pucéat, Michel. / Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis. In: Nature communications. 2019 ; Vol. 10, No. 1.
@article{71d2daf39af544af8091c493201a5bcc,
title = "Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis",
abstract = "Genetically modified mice have advanced our understanding of valve development and disease. Yet, human pathophysiological valvulogenesis remains poorly understood. Here we report that, by combining single cell sequencing and in vivo approaches, a population of human pre-valvular endocardial cells (HPVCs) can be derived from pluripotent stem cells. HPVCs express gene patterns conforming to the E9.0 mouse atrio-ventricular canal (AVC) endocardium signature. HPVCs treated with BMP2, cultured on mouse AVC cushions, or transplanted into the AVC of embryonic mouse hearts, undergo endothelial-to-mesenchymal transition and express markers of valve interstitial cells of different valvular layers, demonstrating cell specificity. Extending this model to patient-specific induced pluripotent stem cells recapitulates features of mitral valve prolapse and identified dysregulation of the SHH pathway. Concurrently increased ECM secretion can be rescued by SHH inhibition, thus providing a putative therapeutic target. In summary, we report a human cell model of valvulogenesis that faithfully recapitulates valve disease in a dish.",
author = "Tui Neri and Emilye Hiriart and {van Vliet}, {Patrick P.} and Emilie Faure and Norris, {Russell A.} and Batoul Farhat and Bernd Jagla and Julie Lefrancois and Yukiko Sugi and Thomas Moore-Morris and St{\'e}phane Zaffran and Faustino, {Randolph S.} and Zambon, {Alexander C.} and Desvignes, {Jean Pierre} and David Salgado and Levine, {Robert A.} and {de la Pompa}, {Jose Luis} and Andre Terzic and Evans, {Sylvia M.} and Roger Markwald and Michel Puc{\'e}at",
year = "2019",
month = "12",
day = "1",
doi = "10.1038/s41467-019-09459-5",
language = "English (US)",
volume = "10",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",
number = "1",

}

TY - JOUR

T1 - Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis

AU - Neri, Tui

AU - Hiriart, Emilye

AU - van Vliet, Patrick P.

AU - Faure, Emilie

AU - Norris, Russell A.

AU - Farhat, Batoul

AU - Jagla, Bernd

AU - Lefrancois, Julie

AU - Sugi, Yukiko

AU - Moore-Morris, Thomas

AU - Zaffran, Stéphane

AU - Faustino, Randolph S.

AU - Zambon, Alexander C.

AU - Desvignes, Jean Pierre

AU - Salgado, David

AU - Levine, Robert A.

AU - de la Pompa, Jose Luis

AU - Terzic, Andre

AU - Evans, Sylvia M.

AU - Markwald, Roger

AU - Pucéat, Michel

PY - 2019/12/1

Y1 - 2019/12/1

N2 - Genetically modified mice have advanced our understanding of valve development and disease. Yet, human pathophysiological valvulogenesis remains poorly understood. Here we report that, by combining single cell sequencing and in vivo approaches, a population of human pre-valvular endocardial cells (HPVCs) can be derived from pluripotent stem cells. HPVCs express gene patterns conforming to the E9.0 mouse atrio-ventricular canal (AVC) endocardium signature. HPVCs treated with BMP2, cultured on mouse AVC cushions, or transplanted into the AVC of embryonic mouse hearts, undergo endothelial-to-mesenchymal transition and express markers of valve interstitial cells of different valvular layers, demonstrating cell specificity. Extending this model to patient-specific induced pluripotent stem cells recapitulates features of mitral valve prolapse and identified dysregulation of the SHH pathway. Concurrently increased ECM secretion can be rescued by SHH inhibition, thus providing a putative therapeutic target. In summary, we report a human cell model of valvulogenesis that faithfully recapitulates valve disease in a dish.

AB - Genetically modified mice have advanced our understanding of valve development and disease. Yet, human pathophysiological valvulogenesis remains poorly understood. Here we report that, by combining single cell sequencing and in vivo approaches, a population of human pre-valvular endocardial cells (HPVCs) can be derived from pluripotent stem cells. HPVCs express gene patterns conforming to the E9.0 mouse atrio-ventricular canal (AVC) endocardium signature. HPVCs treated with BMP2, cultured on mouse AVC cushions, or transplanted into the AVC of embryonic mouse hearts, undergo endothelial-to-mesenchymal transition and express markers of valve interstitial cells of different valvular layers, demonstrating cell specificity. Extending this model to patient-specific induced pluripotent stem cells recapitulates features of mitral valve prolapse and identified dysregulation of the SHH pathway. Concurrently increased ECM secretion can be rescued by SHH inhibition, thus providing a putative therapeutic target. In summary, we report a human cell model of valvulogenesis that faithfully recapitulates valve disease in a dish.

UR - http://www.scopus.com/inward/record.url?scp=85064896581&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85064896581&partnerID=8YFLogxK

U2 - 10.1038/s41467-019-09459-5

DO - 10.1038/s41467-019-09459-5

M3 - Article

C2 - 31028265

AN - SCOPUS:85064896581

VL - 10

JO - Nature Communications

JF - Nature Communications

SN - 2041-1723

IS - 1

M1 - 1929

ER -