TY - JOUR
T1 - Humam erythrocytes inhibit complement-mediated solubilization of immune complexes
AU - Dorval, B. L.
AU - Cosio, F. G.
AU - Birmingham, D. J.
AU - Hebert, L. A.
PY - 1989
Y1 - 1989
N2 - Incubation of precipitable immune complexes (IC) with fresh human serum or guinea pig serum resulted in solubilization of IC. When packed human E were added to human serum or guinea pig serum, binding of IC to the E occurred and IC solubilization was significantly inhibited. By contrast, SRBC did not bind IC nor inhibit IC solubilization. Because IC binding to human E is mediated by CR type 1 (CR1) we evaluated whether CR1 was responsible for the inhibition of IC solubilization. Human E were treated with trypsin or anti-CR1 mAb. Both treatments abrogated IC binding to human E but did not affect the ability of the human E to inhibit IC solubilization. Human E inhibited C activation by IC. Thus, incubation of IC in human serum caused significant activation of C3 and C5, but not C4. However, when IC were incubated in whole blood or with isolated human E and serum, C3 activation by IC was inhibited significantly. In addition, we demonstrated that the C3b generated during C activation by IC deposited on both IC and human E. Thus, human E may compete for nascent C3 generated during C activation by IC. In conclusion, human E inhibit both complement-mediated solubilization of IC and C activation by IC.
AB - Incubation of precipitable immune complexes (IC) with fresh human serum or guinea pig serum resulted in solubilization of IC. When packed human E were added to human serum or guinea pig serum, binding of IC to the E occurred and IC solubilization was significantly inhibited. By contrast, SRBC did not bind IC nor inhibit IC solubilization. Because IC binding to human E is mediated by CR type 1 (CR1) we evaluated whether CR1 was responsible for the inhibition of IC solubilization. Human E were treated with trypsin or anti-CR1 mAb. Both treatments abrogated IC binding to human E but did not affect the ability of the human E to inhibit IC solubilization. Human E inhibited C activation by IC. Thus, incubation of IC in human serum caused significant activation of C3 and C5, but not C4. However, when IC were incubated in whole blood or with isolated human E and serum, C3 activation by IC was inhibited significantly. In addition, we demonstrated that the C3b generated during C activation by IC deposited on both IC and human E. Thus, human E may compete for nascent C3 generated during C activation by IC. In conclusion, human E inhibit both complement-mediated solubilization of IC and C activation by IC.
UR - http://www.scopus.com/inward/record.url?scp=0024478168&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0024478168&partnerID=8YFLogxK
M3 - Article
C2 - 2522967
AN - SCOPUS:0024478168
SN - 0022-1767
VL - 142
SP - 2721
EP - 2727
JO - Journal of Immunology
JF - Journal of Immunology
IS - 8
ER -