Homotopic region connectivity during concussion recovery: A longitudinal fMRI study

Catherine D. Chong, Lujia Wang, Kun Wang, Stephen Traub, Jing Li

Research output: Contribution to journalArticle

Abstract

Objectives To (i) investigate alterations in homotopic functional connectivity (hfc) in concussed patients relative to healthy controls (HC) and to (ii) interrogate whether hfc in concussed patients normalized during the recovery process. The relationship between symptom recovery and change in hfc was assessed using post-hoc analyses. Methods This study included 15 concussed patients (mean age = 39.1, SD = 10.1; sex: 13 females, 2 males) and 15 HC (mean age = 39.1, SD = 11.7; sex: 13 females, 2 males). Hfc patterns were interrogated using resting-state magnetic resonance imaging (rs-MRI) for 29 a priori selected pain-processing regions. Concussed patients underwent imaging at two time-points; at 1-month post-concussion (mean time following concussion: 28 days, SD = 9.5) and again at 5-months post-concussion (mean time following concussion: 121 days, SD = 13). At both time-points, symptoms associated with concussion were assessed using the Sports Concussion Assessment Tool (SCAT-3). Results Concussed patients had significantly weaker hfc in the following six regions 1-month post-concussion compared to HC: middle cingulate, posterior insula, middle occipital, spinal trigeminal nucleus, precentral and the pulvinar. There were no regions of significantly stronger hfc in concussed patients relative to HC. Longitudinally, patients showed significant symptom recovery 5-months post-concussion and had significant strengthening of hfc patterns in seven homotopic ROIs: middle cingulate, posterior insula, middle occipital, secondary somatosensory area, spinal trigeminal nucleus, precentral, and the pulvinar. Post-hoc analyses indicated a significant negative correlation between somatosensory functional connectivity strengthening and symptom severity. Conclusion At 1-month post-concussion, patients had significantly weaker hfc in a number of pain-processing regions relative to HC. However, over a period of 5-months, region-pair connectivity showed significant recovery and normalization. Those patients with more successful symptom recovery at 5-months post-concussion had more functional somatosensory strengthening, suggesting an association between functional strengthening and post-concussion symptom recovery.

Original languageEnglish (US)
Article numbere0221892
JournalPloS one
Volume14
Issue number10
DOIs
StatePublished - Jan 1 2019

Fingerprint

longitudinal studies
Longitudinal Studies
Magnetic Resonance Imaging
Recovery
signs and symptoms (animals and humans)
Spinal Trigeminal Nucleus
Pulvinar
Gyrus Cinguli
Imaging techniques
pain
Post-Concussion Syndrome
Magnetic resonance
Processing
Sports
Pain
Somatosensory Cortex
gender
sports
magnetic resonance imaging
image analysis

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Cite this

Homotopic region connectivity during concussion recovery : A longitudinal fMRI study. / Chong, Catherine D.; Wang, Lujia; Wang, Kun; Traub, Stephen; Li, Jing.

In: PloS one, Vol. 14, No. 10, e0221892, 01.01.2019.

Research output: Contribution to journalArticle

Chong, Catherine D. ; Wang, Lujia ; Wang, Kun ; Traub, Stephen ; Li, Jing. / Homotopic region connectivity during concussion recovery : A longitudinal fMRI study. In: PloS one. 2019 ; Vol. 14, No. 10.
@article{57c36964b0764b31bb66f215a6613a3d,
title = "Homotopic region connectivity during concussion recovery: A longitudinal fMRI study",
abstract = "Objectives To (i) investigate alterations in homotopic functional connectivity (hfc) in concussed patients relative to healthy controls (HC) and to (ii) interrogate whether hfc in concussed patients normalized during the recovery process. The relationship between symptom recovery and change in hfc was assessed using post-hoc analyses. Methods This study included 15 concussed patients (mean age = 39.1, SD = 10.1; sex: 13 females, 2 males) and 15 HC (mean age = 39.1, SD = 11.7; sex: 13 females, 2 males). Hfc patterns were interrogated using resting-state magnetic resonance imaging (rs-MRI) for 29 a priori selected pain-processing regions. Concussed patients underwent imaging at two time-points; at 1-month post-concussion (mean time following concussion: 28 days, SD = 9.5) and again at 5-months post-concussion (mean time following concussion: 121 days, SD = 13). At both time-points, symptoms associated with concussion were assessed using the Sports Concussion Assessment Tool (SCAT-3). Results Concussed patients had significantly weaker hfc in the following six regions 1-month post-concussion compared to HC: middle cingulate, posterior insula, middle occipital, spinal trigeminal nucleus, precentral and the pulvinar. There were no regions of significantly stronger hfc in concussed patients relative to HC. Longitudinally, patients showed significant symptom recovery 5-months post-concussion and had significant strengthening of hfc patterns in seven homotopic ROIs: middle cingulate, posterior insula, middle occipital, secondary somatosensory area, spinal trigeminal nucleus, precentral, and the pulvinar. Post-hoc analyses indicated a significant negative correlation between somatosensory functional connectivity strengthening and symptom severity. Conclusion At 1-month post-concussion, patients had significantly weaker hfc in a number of pain-processing regions relative to HC. However, over a period of 5-months, region-pair connectivity showed significant recovery and normalization. Those patients with more successful symptom recovery at 5-months post-concussion had more functional somatosensory strengthening, suggesting an association between functional strengthening and post-concussion symptom recovery.",
author = "Chong, {Catherine D.} and Lujia Wang and Kun Wang and Stephen Traub and Jing Li",
year = "2019",
month = "1",
day = "1",
doi = "10.1371/journal.pone.0221892",
language = "English (US)",
volume = "14",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "10",

}

TY - JOUR

T1 - Homotopic region connectivity during concussion recovery

T2 - A longitudinal fMRI study

AU - Chong, Catherine D.

AU - Wang, Lujia

AU - Wang, Kun

AU - Traub, Stephen

AU - Li, Jing

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Objectives To (i) investigate alterations in homotopic functional connectivity (hfc) in concussed patients relative to healthy controls (HC) and to (ii) interrogate whether hfc in concussed patients normalized during the recovery process. The relationship between symptom recovery and change in hfc was assessed using post-hoc analyses. Methods This study included 15 concussed patients (mean age = 39.1, SD = 10.1; sex: 13 females, 2 males) and 15 HC (mean age = 39.1, SD = 11.7; sex: 13 females, 2 males). Hfc patterns were interrogated using resting-state magnetic resonance imaging (rs-MRI) for 29 a priori selected pain-processing regions. Concussed patients underwent imaging at two time-points; at 1-month post-concussion (mean time following concussion: 28 days, SD = 9.5) and again at 5-months post-concussion (mean time following concussion: 121 days, SD = 13). At both time-points, symptoms associated with concussion were assessed using the Sports Concussion Assessment Tool (SCAT-3). Results Concussed patients had significantly weaker hfc in the following six regions 1-month post-concussion compared to HC: middle cingulate, posterior insula, middle occipital, spinal trigeminal nucleus, precentral and the pulvinar. There were no regions of significantly stronger hfc in concussed patients relative to HC. Longitudinally, patients showed significant symptom recovery 5-months post-concussion and had significant strengthening of hfc patterns in seven homotopic ROIs: middle cingulate, posterior insula, middle occipital, secondary somatosensory area, spinal trigeminal nucleus, precentral, and the pulvinar. Post-hoc analyses indicated a significant negative correlation between somatosensory functional connectivity strengthening and symptom severity. Conclusion At 1-month post-concussion, patients had significantly weaker hfc in a number of pain-processing regions relative to HC. However, over a period of 5-months, region-pair connectivity showed significant recovery and normalization. Those patients with more successful symptom recovery at 5-months post-concussion had more functional somatosensory strengthening, suggesting an association between functional strengthening and post-concussion symptom recovery.

AB - Objectives To (i) investigate alterations in homotopic functional connectivity (hfc) in concussed patients relative to healthy controls (HC) and to (ii) interrogate whether hfc in concussed patients normalized during the recovery process. The relationship between symptom recovery and change in hfc was assessed using post-hoc analyses. Methods This study included 15 concussed patients (mean age = 39.1, SD = 10.1; sex: 13 females, 2 males) and 15 HC (mean age = 39.1, SD = 11.7; sex: 13 females, 2 males). Hfc patterns were interrogated using resting-state magnetic resonance imaging (rs-MRI) for 29 a priori selected pain-processing regions. Concussed patients underwent imaging at two time-points; at 1-month post-concussion (mean time following concussion: 28 days, SD = 9.5) and again at 5-months post-concussion (mean time following concussion: 121 days, SD = 13). At both time-points, symptoms associated with concussion were assessed using the Sports Concussion Assessment Tool (SCAT-3). Results Concussed patients had significantly weaker hfc in the following six regions 1-month post-concussion compared to HC: middle cingulate, posterior insula, middle occipital, spinal trigeminal nucleus, precentral and the pulvinar. There were no regions of significantly stronger hfc in concussed patients relative to HC. Longitudinally, patients showed significant symptom recovery 5-months post-concussion and had significant strengthening of hfc patterns in seven homotopic ROIs: middle cingulate, posterior insula, middle occipital, secondary somatosensory area, spinal trigeminal nucleus, precentral, and the pulvinar. Post-hoc analyses indicated a significant negative correlation between somatosensory functional connectivity strengthening and symptom severity. Conclusion At 1-month post-concussion, patients had significantly weaker hfc in a number of pain-processing regions relative to HC. However, over a period of 5-months, region-pair connectivity showed significant recovery and normalization. Those patients with more successful symptom recovery at 5-months post-concussion had more functional somatosensory strengthening, suggesting an association between functional strengthening and post-concussion symptom recovery.

UR - http://www.scopus.com/inward/record.url?scp=85072802652&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072802652&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0221892

DO - 10.1371/journal.pone.0221892

M3 - Article

C2 - 31577811

AN - SCOPUS:85072802652

VL - 14

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 10

M1 - e0221892

ER -