History dependence of vital capacity in constricted lungs

Thomas P Olson, Theodore A. Wilson, Bruce David Johnson, Robert E. Hyatt

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Measurements of dynamic force-length behavior of maximally activated strips of smooth muscle during oscillatory length changes show that force decreases well below the isometric force during the shortening phase of the oscillation. The magnitude of the decrease depends on the rate of shortening; for slower shortening, the decrease is smaller and force is larger. Modeling of expiratory flow, based on these data, predicts that vital capacity in constricted, lungs depends on the rate of expiration. In maximally constricted lungs, forced vital capacity (FVC) is predicted to be 16% smaller than control, and vital capacity for a very slow expiration (SVC), 31% less than, control. These predictions were tested by measuring FVC and SVC in constricted normal subjects. In the first group of 9 subjects, four maneuvers were made following the delivery of two doses of methacholine in the order: SVC, FVC, FVC, SVC. In a second group of 11 subjects, two maneuvers were performed at each dose in the order: FVC, SVC. At the highest dose of methacholine, FVC for both trials in group 1 and for the one trial in group 2 were all ∼13% less than control, a slightly smaller decrease than predicted. SVC for the 1st trial in group 1 was 27% less than control, also slightly smaller than predicted. The difference between FVC and SVC for this trial, 13%, was close to the predicted difference of 15%. However, SVC for the 2nd trial in group 1 (preceded by 3 vital capacity maneuvers) and for group 2 (preceded by 1) were no different from FVC. We conclude that vital capacity in constricted lungs depends on the dynamic force-length properties of smooth muscle and that the history dependence of the dynamic properties of smooth muscle is more complicated than has been inferred from oscillatory force-length behavior.

Original languageEnglish (US)
Pages (from-to)121-125
Number of pages5
JournalJournal of Applied Physiology
Volume109
Issue number1
DOIs
StatePublished - Jul 2010

Fingerprint

Vital Capacity
History
Lung
Smooth Muscle
Methacholine Chloride

Keywords

  • Asthma
  • Force-length properties
  • Smooth muscle

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)
  • Medicine(all)

Cite this

History dependence of vital capacity in constricted lungs. / Olson, Thomas P; Wilson, Theodore A.; Johnson, Bruce David; Hyatt, Robert E.

In: Journal of Applied Physiology, Vol. 109, No. 1, 07.2010, p. 121-125.

Research output: Contribution to journalArticle

Olson, Thomas P ; Wilson, Theodore A. ; Johnson, Bruce David ; Hyatt, Robert E. / History dependence of vital capacity in constricted lungs. In: Journal of Applied Physiology. 2010 ; Vol. 109, No. 1. pp. 121-125.
@article{79090e87fba146fabfbf759e683ddf29,
title = "History dependence of vital capacity in constricted lungs",
abstract = "Measurements of dynamic force-length behavior of maximally activated strips of smooth muscle during oscillatory length changes show that force decreases well below the isometric force during the shortening phase of the oscillation. The magnitude of the decrease depends on the rate of shortening; for slower shortening, the decrease is smaller and force is larger. Modeling of expiratory flow, based on these data, predicts that vital capacity in constricted, lungs depends on the rate of expiration. In maximally constricted lungs, forced vital capacity (FVC) is predicted to be 16{\%} smaller than control, and vital capacity for a very slow expiration (SVC), 31{\%} less than, control. These predictions were tested by measuring FVC and SVC in constricted normal subjects. In the first group of 9 subjects, four maneuvers were made following the delivery of two doses of methacholine in the order: SVC, FVC, FVC, SVC. In a second group of 11 subjects, two maneuvers were performed at each dose in the order: FVC, SVC. At the highest dose of methacholine, FVC for both trials in group 1 and for the one trial in group 2 were all ∼13{\%} less than control, a slightly smaller decrease than predicted. SVC for the 1st trial in group 1 was 27{\%} less than control, also slightly smaller than predicted. The difference between FVC and SVC for this trial, 13{\%}, was close to the predicted difference of 15{\%}. However, SVC for the 2nd trial in group 1 (preceded by 3 vital capacity maneuvers) and for group 2 (preceded by 1) were no different from FVC. We conclude that vital capacity in constricted lungs depends on the dynamic force-length properties of smooth muscle and that the history dependence of the dynamic properties of smooth muscle is more complicated than has been inferred from oscillatory force-length behavior.",
keywords = "Asthma, Force-length properties, Smooth muscle",
author = "Olson, {Thomas P} and Wilson, {Theodore A.} and Johnson, {Bruce David} and Hyatt, {Robert E.}",
year = "2010",
month = "7",
doi = "10.1152/japplphysiol.01365.2009",
language = "English (US)",
volume = "109",
pages = "121--125",
journal = "Journal of Applied Physiology",
issn = "8750-7587",
publisher = "American Physiological Society",
number = "1",

}

TY - JOUR

T1 - History dependence of vital capacity in constricted lungs

AU - Olson, Thomas P

AU - Wilson, Theodore A.

AU - Johnson, Bruce David

AU - Hyatt, Robert E.

PY - 2010/7

Y1 - 2010/7

N2 - Measurements of dynamic force-length behavior of maximally activated strips of smooth muscle during oscillatory length changes show that force decreases well below the isometric force during the shortening phase of the oscillation. The magnitude of the decrease depends on the rate of shortening; for slower shortening, the decrease is smaller and force is larger. Modeling of expiratory flow, based on these data, predicts that vital capacity in constricted, lungs depends on the rate of expiration. In maximally constricted lungs, forced vital capacity (FVC) is predicted to be 16% smaller than control, and vital capacity for a very slow expiration (SVC), 31% less than, control. These predictions were tested by measuring FVC and SVC in constricted normal subjects. In the first group of 9 subjects, four maneuvers were made following the delivery of two doses of methacholine in the order: SVC, FVC, FVC, SVC. In a second group of 11 subjects, two maneuvers were performed at each dose in the order: FVC, SVC. At the highest dose of methacholine, FVC for both trials in group 1 and for the one trial in group 2 were all ∼13% less than control, a slightly smaller decrease than predicted. SVC for the 1st trial in group 1 was 27% less than control, also slightly smaller than predicted. The difference between FVC and SVC for this trial, 13%, was close to the predicted difference of 15%. However, SVC for the 2nd trial in group 1 (preceded by 3 vital capacity maneuvers) and for group 2 (preceded by 1) were no different from FVC. We conclude that vital capacity in constricted lungs depends on the dynamic force-length properties of smooth muscle and that the history dependence of the dynamic properties of smooth muscle is more complicated than has been inferred from oscillatory force-length behavior.

AB - Measurements of dynamic force-length behavior of maximally activated strips of smooth muscle during oscillatory length changes show that force decreases well below the isometric force during the shortening phase of the oscillation. The magnitude of the decrease depends on the rate of shortening; for slower shortening, the decrease is smaller and force is larger. Modeling of expiratory flow, based on these data, predicts that vital capacity in constricted, lungs depends on the rate of expiration. In maximally constricted lungs, forced vital capacity (FVC) is predicted to be 16% smaller than control, and vital capacity for a very slow expiration (SVC), 31% less than, control. These predictions were tested by measuring FVC and SVC in constricted normal subjects. In the first group of 9 subjects, four maneuvers were made following the delivery of two doses of methacholine in the order: SVC, FVC, FVC, SVC. In a second group of 11 subjects, two maneuvers were performed at each dose in the order: FVC, SVC. At the highest dose of methacholine, FVC for both trials in group 1 and for the one trial in group 2 were all ∼13% less than control, a slightly smaller decrease than predicted. SVC for the 1st trial in group 1 was 27% less than control, also slightly smaller than predicted. The difference between FVC and SVC for this trial, 13%, was close to the predicted difference of 15%. However, SVC for the 2nd trial in group 1 (preceded by 3 vital capacity maneuvers) and for group 2 (preceded by 1) were no different from FVC. We conclude that vital capacity in constricted lungs depends on the dynamic force-length properties of smooth muscle and that the history dependence of the dynamic properties of smooth muscle is more complicated than has been inferred from oscillatory force-length behavior.

KW - Asthma

KW - Force-length properties

KW - Smooth muscle

UR - http://www.scopus.com/inward/record.url?scp=77954339947&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77954339947&partnerID=8YFLogxK

U2 - 10.1152/japplphysiol.01365.2009

DO - 10.1152/japplphysiol.01365.2009

M3 - Article

VL - 109

SP - 121

EP - 125

JO - Journal of Applied Physiology

JF - Journal of Applied Physiology

SN - 8750-7587

IS - 1

ER -