Histofluorescence study of events accompanying accumulation and migration of norepinephrine within locally cooled nerves

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Glyoxylic acid was used to induce fluorescence in sections of rabbit sciatic nerve. In fresh nerves treated with this agent there were scattered finely beaded axons with a weak blue-green fluorescence. During local cooling, blue-green fluorescence accumulated steadily at the proximal boundary of the cooled region but never at its distal boundary. This accumulation gave rise to dilated axons that often swelled into brilliantly fluorescent balloon-like structures up to 10 μm in diameter. Axonal fluorescence was probably specific for norepinephrine, being enhanced by inhibition of the metabolism and diminished by inhibition of the synthesis or storage of this neurotransmitter. After local cooling of nerves for 1.5 hr, specific fluorescence was confined within 0.8 mm of the cooled region. Rewarming led to rapid removal of fluorescence from the cooled region and to disappearance of most of the balloon-like swellings. Simultaneously, rewarming caused brightly fluorescent fibers that were neither dilated nor swollen to appear in distal regions of nerve. As this wave of fluorescence migrated distally with increasing duration of rewarming, it was spread over increasingly broad regions of nerve, which suggests that axonal transport of norepinephrine may involve some kind of dispersive process.

Original languageEnglish (US)
Pages (from-to)251-263
Number of pages13
JournalJournal of Neurobiology
Volume8
Issue number3
StatePublished - 1977

Fingerprint

Norepinephrine
Fluorescence
Rewarming
Axons
Axonal Transport
Sciatic Nerve
Neurotransmitter Agents
Rabbits

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

@article{37cf8e914de541908f65fea6d1816052,
title = "Histofluorescence study of events accompanying accumulation and migration of norepinephrine within locally cooled nerves",
abstract = "Glyoxylic acid was used to induce fluorescence in sections of rabbit sciatic nerve. In fresh nerves treated with this agent there were scattered finely beaded axons with a weak blue-green fluorescence. During local cooling, blue-green fluorescence accumulated steadily at the proximal boundary of the cooled region but never at its distal boundary. This accumulation gave rise to dilated axons that often swelled into brilliantly fluorescent balloon-like structures up to 10 μm in diameter. Axonal fluorescence was probably specific for norepinephrine, being enhanced by inhibition of the metabolism and diminished by inhibition of the synthesis or storage of this neurotransmitter. After local cooling of nerves for 1.5 hr, specific fluorescence was confined within 0.8 mm of the cooled region. Rewarming led to rapid removal of fluorescence from the cooled region and to disappearance of most of the balloon-like swellings. Simultaneously, rewarming caused brightly fluorescent fibers that were neither dilated nor swollen to appear in distal regions of nerve. As this wave of fluorescence migrated distally with increasing duration of rewarming, it was spread over increasingly broad regions of nerve, which suggests that axonal transport of norepinephrine may involve some kind of dispersive process.",
author = "Brimijoin, {William Stephen}",
year = "1977",
language = "English (US)",
volume = "8",
pages = "251--263",
journal = "Developmental Neurobiology",
issn = "1932-8451",
publisher = "John Wiley and Sons Inc.",
number = "3",

}

TY - JOUR

T1 - Histofluorescence study of events accompanying accumulation and migration of norepinephrine within locally cooled nerves

AU - Brimijoin, William Stephen

PY - 1977

Y1 - 1977

N2 - Glyoxylic acid was used to induce fluorescence in sections of rabbit sciatic nerve. In fresh nerves treated with this agent there were scattered finely beaded axons with a weak blue-green fluorescence. During local cooling, blue-green fluorescence accumulated steadily at the proximal boundary of the cooled region but never at its distal boundary. This accumulation gave rise to dilated axons that often swelled into brilliantly fluorescent balloon-like structures up to 10 μm in diameter. Axonal fluorescence was probably specific for norepinephrine, being enhanced by inhibition of the metabolism and diminished by inhibition of the synthesis or storage of this neurotransmitter. After local cooling of nerves for 1.5 hr, specific fluorescence was confined within 0.8 mm of the cooled region. Rewarming led to rapid removal of fluorescence from the cooled region and to disappearance of most of the balloon-like swellings. Simultaneously, rewarming caused brightly fluorescent fibers that were neither dilated nor swollen to appear in distal regions of nerve. As this wave of fluorescence migrated distally with increasing duration of rewarming, it was spread over increasingly broad regions of nerve, which suggests that axonal transport of norepinephrine may involve some kind of dispersive process.

AB - Glyoxylic acid was used to induce fluorescence in sections of rabbit sciatic nerve. In fresh nerves treated with this agent there were scattered finely beaded axons with a weak blue-green fluorescence. During local cooling, blue-green fluorescence accumulated steadily at the proximal boundary of the cooled region but never at its distal boundary. This accumulation gave rise to dilated axons that often swelled into brilliantly fluorescent balloon-like structures up to 10 μm in diameter. Axonal fluorescence was probably specific for norepinephrine, being enhanced by inhibition of the metabolism and diminished by inhibition of the synthesis or storage of this neurotransmitter. After local cooling of nerves for 1.5 hr, specific fluorescence was confined within 0.8 mm of the cooled region. Rewarming led to rapid removal of fluorescence from the cooled region and to disappearance of most of the balloon-like swellings. Simultaneously, rewarming caused brightly fluorescent fibers that were neither dilated nor swollen to appear in distal regions of nerve. As this wave of fluorescence migrated distally with increasing duration of rewarming, it was spread over increasingly broad regions of nerve, which suggests that axonal transport of norepinephrine may involve some kind of dispersive process.

UR - http://www.scopus.com/inward/record.url?scp=0017682828&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0017682828&partnerID=8YFLogxK

M3 - Article

C2 - 69016

AN - SCOPUS:0017682828

VL - 8

SP - 251

EP - 263

JO - Developmental Neurobiology

JF - Developmental Neurobiology

SN - 1932-8451

IS - 3

ER -