Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes

Mihye Kim, Ji Youn Lee, Caroline N. Jones, Alexander Revzin, Giyoong Tae

Research output: Contribution to journalArticlepeer-review

156 Scopus citations

Abstract

Primary hepatocytes are commonly used as liver surrogates in toxicology and tissue engineering fields, therefore, maintenance of functional hepatocytes in vitro is an important topic of investigation. This paper sought to characterize heparin-based hydrogel as a three-dimensional scaffold for hepatocyte culture. The primary rat hepatocytes were mixed with a prepolymer solution comprised of thiolated heparin and acrylated poly(ethylene glycol) (PEG). Raising the temperature from 25° to 37 °C initiated Michael addition reaction between the thiol and acrylated moieties and resulted in formation of hydrogel with entrapped cells. Analysis of liver-specific products, albumin and urea, revealed that the heparin hydrogel was non-cytotoxic to cells and, in fact, promoted hepatic function. Hepatocytes entrapped in the heparin-based hydrogel maintained high levels of albumin and urea synthesis after three weeks in culture. Because heparin is known to bind growth factors, we incorporated hepatocyte growth factor (HGF)-an important liver signaling molecule - into the hydrogel. HGF release from heparin hydrogel matrix was analyzed using enzyme linked immunoassay (ELISA) and was shown to occur in a controlled manner with only 40% of GF molecules released after 30 days in culture. Importantly, hepatocytes cultured within HGF-containing hydrogels exhibited significantly higher levels of albumin and urea synthesis compared to cells cultured in the hydrogel alone. Overall, heparin-based hydrogel showed to be a promising matrix for encapsulation and maintenance of difficult-to-culture primary hepatocytes. In the future, we envision employing heparin-based hyrogels as matrices for in vitro differentiation of hepatocytes or stem cells and as vehicles for transplantation of these cells.

Original languageEnglish (US)
Pages (from-to)3596-3603
Number of pages8
JournalBiomaterials
Volume31
Issue number13
DOIs
StatePublished - May 2010

Keywords

  • Growth factors
  • Heparin
  • Hepatocyte cultivation
  • Hydrogels
  • Liver

ASJC Scopus subject areas

  • Mechanics of Materials
  • Ceramics and Composites
  • Bioengineering
  • Biophysics
  • Biomaterials

Fingerprint

Dive into the research topics of 'Heparin-based hydrogel as a matrix for encapsulation and cultivation of primary hepatocytes'. Together they form a unique fingerprint.

Cite this