TY - JOUR
T1 - Gliadin-dependent neuromuscular and epithelial secretory responses in gluten-sensitive HLA-DQ8 transgenic mice
AU - Verdu, E. F.
AU - Huang, X.
AU - Natividad, J.
AU - Lu, J.
AU - Blennerhassett, P. A.
AU - David, C. S.
AU - McKay, D. M.
AU - Murray, J. A.
PY - 2007
Y1 - 2007
N2 - Celiac disease is a gluten intolerance caused by a T-cell response against human leukocyte antigen (HLA)-DQ2 and DQ8-bound gluten peptides. Some subjects experience gastrointestinal symptoms in the absence of villous atrophy. Here we investigate the potential mechanisms of gut dysfunction in gluten-sensitive HLA-DQ8 transgenic mice. HLA-DQ8 mice were sensitized and gavaged with gliadin 3X/wk for 3 wk (G/G). Controls included 1) nonsensitized mice gavaged with rice (C); 2) gliadin-sensitized mice gavaged with rice (G/R); and 3) BSA-sensitized mice gavaged with BSA (BSA/BSA). CD3+ intraepithelial lymphocyte, macrophage, and FOX-P3-positive cell counts were determined. Acetylcholine release, small intestinal contractility, and epithelial ion transport were measured. Gut function was investigated after gluten withdrawal and in HLA-DQ6 mice. Intestinal atrophy was not observed in G/G mice. Recruitment of intraepithelial lymphocyte, macrophages, and FOX-P3+ cells were observed in G/G, but not in C, G/R, or BSA/BSA mice. This was paralleled by increased acetylcholine release from the myenteric plexus, muscle hypercontractility, and increased active ion transport in G/G mice. Changes in muscle contractility normalized in DQ8 mice after a gluten withdrawal. HLA-DQ6 controls did not exhibit the abnormalities in gut function observed in DQ8 mice. Gluten sensitivity in HLA-DQ8 mice induces immune activation in the absence of intestinal atrophy. This is associated with cholinergic dysfunction and a prosecretory state that may lead to altered water movements and dysmotility. The results provide a mechanism by which gluten could induce gut dysfunction in patients with a genetic predisposition but without fully evolved celiac disease.
AB - Celiac disease is a gluten intolerance caused by a T-cell response against human leukocyte antigen (HLA)-DQ2 and DQ8-bound gluten peptides. Some subjects experience gastrointestinal symptoms in the absence of villous atrophy. Here we investigate the potential mechanisms of gut dysfunction in gluten-sensitive HLA-DQ8 transgenic mice. HLA-DQ8 mice were sensitized and gavaged with gliadin 3X/wk for 3 wk (G/G). Controls included 1) nonsensitized mice gavaged with rice (C); 2) gliadin-sensitized mice gavaged with rice (G/R); and 3) BSA-sensitized mice gavaged with BSA (BSA/BSA). CD3+ intraepithelial lymphocyte, macrophage, and FOX-P3-positive cell counts were determined. Acetylcholine release, small intestinal contractility, and epithelial ion transport were measured. Gut function was investigated after gluten withdrawal and in HLA-DQ6 mice. Intestinal atrophy was not observed in G/G mice. Recruitment of intraepithelial lymphocyte, macrophages, and FOX-P3+ cells were observed in G/G, but not in C, G/R, or BSA/BSA mice. This was paralleled by increased acetylcholine release from the myenteric plexus, muscle hypercontractility, and increased active ion transport in G/G mice. Changes in muscle contractility normalized in DQ8 mice after a gluten withdrawal. HLA-DQ6 controls did not exhibit the abnormalities in gut function observed in DQ8 mice. Gluten sensitivity in HLA-DQ8 mice induces immune activation in the absence of intestinal atrophy. This is associated with cholinergic dysfunction and a prosecretory state that may lead to altered water movements and dysmotility. The results provide a mechanism by which gluten could induce gut dysfunction in patients with a genetic predisposition but without fully evolved celiac disease.
KW - Food sensitivity
KW - Intestinal ion transport
KW - Muscle contractility
UR - http://www.scopus.com/inward/record.url?scp=38349112856&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=38349112856&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.00225.2007
DO - 10.1152/ajpgi.00225.2007
M3 - Article
C2 - 18006603
AN - SCOPUS:38349112856
SN - 1931-857X
VL - 294
SP - G217-G225
JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
IS - 1
ER -